Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Основная часть

Теоретическая часть

Практическая часть

Исследование проблемы зависимости артериального давления от атмосферного методом cоциального опроса (интернет опроса)

Заключение

Список используемой литературы

Введение:

Действия атмосферного давления и атмосферных явлений (гроза, горячие и сухие ветры, туманы, снегопад и др.), по мнению различных учёных, влияют на самочувствие примерно 75% людей. По данным различных источников эта цифра несколько колеблется, но с самим фактом влияния атмосферных явлений на самочувствие человека согласны все авторы. Это подтверждает и жизненный опыт любого из нас. Понятие «метеочувсвительность» включает в себя влияние нескольких факторов на здоровье человека в целом. Само значение атмосферного давления (или его изменения) является лишь одним из факторов, влияющим на самочувствие в целом. А мы хотим акцентировать внимание на конкретном влиянии именно атмосферного давления (его изменений) на значение именно артериального давления крови. При этом мы постарались конкретизировать проблему и остановиться на влиянии изменений атмосферного давления на значение артериального давления подростков.

В подростковом возрасте часто возникают проблемы со здоровьем, носящие временный характер, то есть проходящие с возрастом. Это связано с тем, что в период быстрого роста и развития организма многие органы и функции человека развиваются в разном темпе. Кроме всего прочего влияние оказывает и то, что именно в подростковом возрасте в организме происходит серьёзная гормональная перестройка.

В большинстве случаев избежать перепадов артериального давления в такой ситуации невозможно. Но нам кажется, что если подростки будут знать, с чем именно могут быть связаны эти перепады, то им проще будет это воспринять и пережить. Многие наши друзья и одноклассники часто обращаются к врачу с жалобами на повышенное или пониженное давление. Но никаких связанных с этим хронических заболеваний у них при этом нет.

Исходя из вышесказанного, мы считаем, что изучение данной проблемы является важным, нужным и интересным.

Цель исследования

Задачи исследования:

    оценить мнение респондентов по данной проблеме

    выяснить мнение медицинских работников, имеющих прямое отношение к работе с подростками по данной проблеме

    экспериментально выявить зависимость артериального давления от атмосферного у подростков

Гипотеза исследования:

Методы исследования:

    изучение литературных источников и интернет ресурсов по теме исследования

    метод прямого измерения атмосферного и артериального давления

В течении 10-ти дней подряд мы измеряли артериальное давление у группы испытуемых 13-ти и 14-ти лет (воспользовались помощью одноклассников). Параллельно мы измеряли атмосферное давление барометром.

    метод анализа и сравнения полученных результатов измерения

На основании результатов прямых измерений мы построили серию графических зависимостей, наглядно демонстрирующих наличие или отсутствие взаимосвязи между давлениями

    метод социального опроса (интернет-опроса)

Воспользовавшись возможностями сети интернет мы предложили абсолютно незнакомым нам подросткам ответить на несколько вопросов по теме нашего исследования. Мы считаем, что именно интернет позволяет в короткий срок опросить большое количество людей и тем самым сделать статистические данные наиболее точными.

    метод интервьюирования

Тема нашего исследования напрямую касается здоровья человека, потому мнение именно медицинских работников по теме нашего исследования кажется нам наиболее авторитетным.

Отдельно хочется отметить, что актуальность данной проблемы мы сами стали понимать всё больше и больше в процессе работы над исследованием. Вот основные моменты актуальности проблемы зависимости артериального давления подростков (и его изменения) от значения атмосферного давления:

    это влияет на здоровье человека

    термин «метеочувствительность» подразумевает зависимость от целого ряда атмосферных изменений, не выделяя конкретно атмосферное давление

    мы сами являемся людьми подросткового возраста и эта проблема касается лично нас и наших друзей

    нам интересно было изучать эту проблему, мы узнали для себя много нового и интересного

II . Основная часть

II.I Теоретическая часть

Давление: основные понятия

Давле́ние (P) — физическая величина, характеризующая состояние сплошной среды и численно равная силе, действующей на единицу площади поверхности перпендикулярно этой поверхности.

Давление в системе СИ измеряется в паскалях: [р]=Па

В медицине, метеорологии и многих других областях деятельности человека давление измеряется в миллиметрах ртутного столба (мм. рт. ст.)

Применяются также следующие единицы измерения давления:

Бар, т ехническая атмосфера,физическая атмосфера, метр водяного столба, дюйм ртутного столба, фунт-сила на квадратный дюйм.

Измерение давления газов и жидкостей выполняется с помощью манометров, дифманометров, вакуумметров, атмосферного давления — барометрами, артериального давления — тонометрами.

Атмосферное давление:

Атмосфера - воздушная оболочка Земли. Воздух представляет собой смесь газов, основными из которых являются азот и кислород. Земная атмосфера простирается на несколько тысяч километров и её плотность уменьшается по мере удаления от поверхности Земли.

Масса современной атмосферы составляет приблизительно одну миллионную часть массы Земли. С высотой резко уменьшаются плотность и давление атмосферы, а температура изменяется неравномерно и сложно, в том числе из-за влияния на атмосферу солнечной активности и магнитных бурь. Изменение температуры в границах атмосферы на разных высотах поясняется неодинаковым поглощением солнечной энергии газами. Наиболее интенсивнее тепловые процессы происходят в тропосфере, причем атмосфера нагревается снизу, от поверхности океана и суши.

Следует отметить, что атмосфера имеет очень большое экологическое значение. Она защищает все живые организмы Земли от губительного влияния космических излучений и ударов метеоритов, регулирует сезонные температурные колебания, уравновешивает и выравнивает суточные. Если бы атмосферы не существовало, то колебание суточной температуры на Земле достигло бы ±200 °С.

Мы привыкли воспринимать наличие атмосферы как факт, но атмосферный воздух только кажется нам невесомым. На самом деле, он обладает весом, что можно показать путём несложных расчетов:

Вычислим вес воздуха в объёме 1 м3 вблизи поверхности Земли:

Р=m.g - формула для расчета веса тела известной массы

m=ρ.V, где ρ=1,29 кг/м3 - плотность воздуха вблизи поверхности Земли

Вес 1 м3 воздуха:

Р=1,29кг/м3.1м3.9,8Н/кг ≈ 13 Н

Итак, вес одного кубического метра воздуха примерно 13 Н. Воздух своим весом давит на Землю, следовательно, оказывает давление. Это давление называют атмосферным.

Атмосферное давление — давление атмосферы на все находящиеся в ней предметы и Земную поверхность. Атмосферное давление создаётся гравитационным притяжением воздуха к Земле.

Нормальным атмосферным давлением называют давление в 760 мм рт.ст.на уровне моря при температуре 15 0 С (или 101 325 Па.) Принято при поверхностных расчетах считать нормальным атмосферным давлением 100 кПа.

Сообщая по радио о погоде, дикторы в конце обычно сообщают: атмосферное давление 760 мм ртутного столба (или 749, или 754...). Но многие ли понимают, что это значит, и откуда синоптики берут эти данные?

Измеряют атмосферное давление для того, чтобы с большей вероятностью предсказать возможное изменение погоды. Существует прямая связь между изменениями давления и изменениями погоды. Рост или понижение атмосферного давления с некоторой вероятностью может служить признаком изменения погоды. За понижением давления следует пасмурная, дождливая погода, за повышением — сухая погода, с сильным похолоданием зимой.

Артериальное давление

Кровяное давление — давление, которое кровь оказывает на стенки кровеносных сосудов, или, по-другому говоря, превышение давления жидкости в кровеносной системе над атмосферным. Наиболее часто измеряют артериальное давление; кроме него, выделяют следующие виды кровяного давления: внутрисердечное, капиллярное, венозное.

Артериальное давление — один из важнейших параметров, характеризующих работу кровеносной системы. Давление крови определяется объёмом крови, перекачиваемым в единицу времени сердцем и сопротивлением сосудистого русла.

Верхняя цифра — систолическое артериальное давление, показывает давление в артериях в момент, когда сердце сжимается и выталкивает кровь в артерии. Нижняя цифра — диастолическое давление, показывает давление в артериях в момент расслабления сердечной мышцы. Диастолическое давление — это минимальное давление в артериях. По мере продвижения крови по сосудистому руслу амплитуда колебаний давления крови спадает, венозное и капиллярное давление мало зависят от фазы сердечного цикла.

Типичное значение артериального кровяного давления здорового человека (систолическое/диастолическое) = 120/80 мм рт. ст., давление в крупных венах на несколько мм. рт. ст. ниже нуля (ниже атмосферного). Разница между систолическим артериальным давлением и диастолическим (пульсовое давление) в норме составляет 30-60 мм рт. ст.

Наиболее легко в измерении артериальное давление. Его можно измерить с помощью прибора сфигмоманометра (тонометра). Именно оно и подразумевается обычно под кровяным давлением.

Современные цифровые полуавтоматические тонометры позволяют ограничиться только набором давления (до звукового сигнала), дальнейший сброс давления, регистрацию систолического и диастолического давления, прибор проводит сам.

Влияние различных факторов на показатели артериального давления

Артериальное давление зависит от многих факторов:

    времени суток,

    психологического состояния человека (при стрессе давление повышается),

    приёма различных стимулирующих веществ (кофе, чай, амфетамины) или медикаментов, которые повышают давление.

    от частоты сокращений сердца, которое гонит кровь по сосудам,

    от качества стенок сосудов (их эластичность), которые оказывают крови сопротивление,

    от объема циркулирующей крови и ее вязкости,

    возраста человека

Влияние значения атмосферного давления на значение артериального давления крови человека:

Действия атмосферного давления и атмосферных явлений (гроза, горячие и сухие ветры, туманы, снегопад и др.), по данным различных ученых, влияют на самочувствие примерно 75% населения. Но само значение атмосферного давления (или его изменения) является лишь одним из факторов, влияющим на самочувствие в целом. Понятие «метеочувсвительность» включает в себя влияние нескольких факторов на здоровье человека в целом. А мы хотим акцентировать внимание на конкретном влиянии именно атмосферного давления (его изменений) на значение именно артериального давления крови.

Метеочувствительность

Метеочувствительность - это реакция организма на воздействие метеорологических (погодных) факторов. Метеочувствительность довольно широко распространена и возникает при любых, но чаще непривычных для данного человека климатических условиях. Погоду "чувствует" около трети жителей умеренных широт. Особенностью этих реакций является то, что они возникают у значительного числа людей синхронно с изменением метеорологических условий или несколько опережая их.

Метеочувствительность издавна вызывала удивление и даже страх человека перед непонятным явлением природы. Людей, чувствующих погоду, называли "живыми барометрами", "буревестниками", "пророками погоды". Уже в древности врачи догадывались о влиянии погоды на организм. Для здорового человека метеорологические колебания, как правило, не опасны. Тем не менее у людей, которые не чувствуют погоду, реакции на нее все же проявляются, хотя порой и не осознаются. Их необходимо учитывать, например, у водителей транспорта. При резком изменении метеоусловий им становится труднее концентрировать внимание. Отсюда может возрастать число несчастных случаев. В результате болезней (гриппа, ангины, воспаления легких, заболеваний суставов и др.) или переутомления сопротивляемость и резервы организма снижаются. Именно поэтому метеочувствительность отмечается у 35-70% больных разными заболеваниями. Так, погоду чувствует каждый второй больной с болезнями сердечно-сосудистой системы. Значительные атмосферные изменения могут вызвать перенапряжение и срыв механизмов адаптации. Тогда колебательные процессы в организме - биологические ритмы искажаются, становятся хаотичными. Физиологическую (бессимптомную) погодную реакцию можно сравнить со спокойным озером, по которому идут волны от легкого ветерка. Патологическая (болезненная) погодная реакция представляет своего рода вегетативную "бурю" в организме. Способствуют ее развитию нарушения регуляции вегетативной нервной системы. Число вегетативных расстройств в последнее время возрастает, что связано с действием неблагоприятных факторов современной цивилизации: стресса, спешки, гиподинамии, переедания и недоедания и др. К тому же у разных людей функциональное состояние нервной системы далеко не одинаковое. Это определяет тот факт, что нередко при одних и тех же заболеваниях отмечаются диаметрально противоположные погодные реакции: благоприятные и неблагоприятные. Чаще метеочувствительность наблюдается у лиц со слабым (меланхолики) и сильным неуравновешенным (холерики) типом нервной системы. У людей сильного уравновешенного типа (сангвиники) метеочувствительность проявляется лишь при ослаблении организма. На организм влияет как погода в целом, так и ее отдельные компоненты.

Колебания барометрического (атмосферного) давления действуют двумя путями:

    снижают насыщение крови кислородом (эффект барометрических "ям")

    механически раздражают нервные окончания (рецепторы) плевры (слизистой оболочки, выстилающей плевральную полость), брюшины (выстилающей брюшную полость), синовиальной оболочки суставов, а также рецепторы сосудов.

В обычных условиях на поверхности земли годовые колебания атмосферного воздуха не превышают 20—30 мм, а суточные составляют 4—5 мм. Здоровые люди переносят их легко и незаметно. Некоторые больные очень чувствительны даже к таким незначительным изменениям давления. Так, при понижении давления у лиц, страдающих ревматизмом, появляются боли в пораженных суставах, у больных гипертонической болезнью ухудшается самочувствие, наблюдаются приступы стенокардии. У людей с повышенной нервной возбудимостью резкие перемены давления вызывают появление чувства страха, ухудшение настроения и сна. Перепады атмосферного давления, особенно скачкообразные, негативно сказываются на системе кровообращения, сосудистом тонусе, артериальном давлении.

На самочувствие человека, достаточно долго проживающего в определённой местности, обычное, т.е. характерное давление не должно вызывать особого ухудшения самочувствия.

Пребывание в условиях повышенного атмосферного давления почти ничем не отличается от обычных условий. Лишь при очень высоком давлении отмечается небольшое сокращение частоты пульса и снижение минимального кровяного давления. Более редким, но глубоким становится дыхание. Незначительно понижается слух и обоняние, голос становится приглушенным, появляется чувство слегка онемевшего кожного покрова, сухость слизистых и др. Однако все эти явления относительно легко переносятся.

Более неблагоприятные явления наблюдаются в период изменения атмосферного давления — повышения (компрессии) и особенно его снижения (декомпрессии) до нормального. Чем медленнее происходит изменение давления, тем лучше и без неблагоприятных последствий приспосабливается к нему организм человека.

При пониженном атмосферном давлении отмечается учащение и углубление дыхания, учащение сердечных сокращений (сила их более слабая), некоторое падение кровяного давления, наблюдаются также изменения в крови в виде увеличения количества красных кровяных телец. В основе неблагоприятного влияния пониженного атмосферного давления на организм лежит кислородное голодание. Оно обусловлено тем, что с понижением атмосферного давления понижается и парциальное давление кислорода.

Механизм взаимосвязи атмосферного и кровяного давления:

Атмосферный воздух представляет собой смесь газов, давление каждого из которых вносит свой вклад в значение общего атмосферного давления. Этот вклад отдельно взятого кислорода и есть парциальное давление этого газа. Следовательно, при понижении атмосферного давления уменьшается и парциальное давление кислорода, что приводит к кислородному голоданию и при нормальном функционировании органов дыхания и кровообращения в организм поступает меньшее количество кислорода.

По данным медицинской статистики здоровый человек наиболее комфортно чувствует себя при значении атмосферного давления 760 мм. рт. ст.

II.II Практическая часть

II.II.I Исследование проблемы зависимости артериального давления от атмосферного методом cоциального опроса (интернет опроса)

методом социального анкетирования (интернет-опроса) выяснить мнение целевой аудитории о возможности зависимости кровяного (артериального) давления человека от атмосферного давления.

Целевая аудитория социального опроса: респонденты от 10 до 20 лет.

Заданные вопросы:

Варианты ответов

Ваш возраст?

От 10 до 15 лет

От 15 до 20 лет

Старше 20 лет

Методика анализа результатов:

Анкеты респондентов, выбравших следующие варианты ответов на вопросы исключались и анализу не подлежали:

Варианты ответов

Готовы ли вы помочь нам в нашем исследовании?

Ваш возраст?

Старше 20 лет

Бывали ли у вас случаи понижения или повышения артериального давления?

Интересуетесь ли вы значением атмосферного давления, указанном в метеорологическом прогнозе? (или измеряете сами)

Как вы считаете, связаны ли изменения вашего артериального давления с изменением атмосферного давления?

В результате, к обработке принимались анкеты респондентов готовых нам помочь, являющихся людьми подросткового возраста (мы немного расширили возрастной диапазон), имеющих проблемы с артериальным давлением и имеющим представление о давлении атмосферном. Для упрощения процесса обработки данных мы остановили интернет опрос на сотой анкете, удовлетворяющей вышеперечисленным требованиям.

Да - 65 % Нет - 15 % Не знаю - 20 %

Вывод: большинство людей подросткового возраста, имеющие проблемы с артериальным давлением, склонны связывать это с изменениями атмосферного давления.

Комментарии: подростки не имеют специального медицинского образования, не измеряют давление каждый день, кроме того, могут иметь другие проблемы со здоровьем, влияющие на значение артериального давления. Потому результаты социального опроса выражают лишь мнение аудитории по данному вопросу, а не прямую взаимосвязь рассматриваемых явлений.

Исследование проблемы зависимости артериального давления от атмосферного методом интервьюирования

Задача данного этапа исследования: выяснить мнение медицинских работников, имеющих прямое отношение к работе с подростками по данной проблеме.

Интервью с школьным фельдшером Костяковой Светланой Валерьевной:

Вопрос: скажите, пожалуйста, как часто подростки обращаются к вам с проблемой повышенного или пониженного кровяного давления?

Ответ: очень часто в процессе медицинского профосмотра мы выявляем ряд проблем, напрямую связанных с отклонениями от нормы значения кровяного давления.

Вопрос: как вы думаете, с чем это может быть связано?

Ответ: мне кажется, что основных причин несколько. Это, во-первых, наша переменчивая северная погода. Неокрепший организм подростка просто не успевает мобильно реагировать и правильно и быстро адаптироваться к таким изменениям. По статистике подростки в регионах, имеющих более стабильный климат, намного меньше страдают подобными отклонениями

А во-вторых - это сильная загруженность детей: школа, кружки, секции, репетиторы В больших городах эта проблема стоит ещё острее..

Вопрос: верите ли вы в то, что многие здоровые люди являются метеозависимыми?

Ответ: знаете, сейчас некоторые питерские медицинские центры специализируются на коррекции метеозависимости. Разработаны целые методики, включающие фитотерапию, лечебную гимнастику, дыхательную гимнастику и многое другое. Но эти клиники в основном специализируются на лечении людей среднего и пожилого возраста, или людей с хроническими патологиями в этой области. А у подростков метеозависимость может быть проблемой временной, возрастной. Но если подросток уверен, что перемены погоды влияют на его состояние, никто не мешает ему интересоваться заранее прогнозом погоды и исходя из этого строить свои планы на ближайшие дни. У природы ещё много тайн и вопросов, на которые пока нет конкретных ответов.

Исследование проблемы зависимости артериального давления от атмосферного экспериментальным методом.

Задача данного этапа исследования : экспериментально путём прямых измерений выявить зависимость артериального давления от атмосферного у подростков.

Ход эксперимента : в течении 10 дней измерялось артериальное давление у восьми испытуемых 13-ти и 14-ти лет. Параллельно мы измеряли атмосферное давление барометром, сверяя показания с данными метеорологического прогноза на эти дни. Разница между экспериментальными значениями атмосферного давления и данными метеорологического прогноза оказалась несущественной. Поэтому для сравнения и анализа мы использовали данные, полученные самостоятельно в ходе эксперимента.

Методика обработки данных: данные прямых измерений мы занесли в таблицу (см. далее). В ходе сравнительного анализа мы пришли к выводу о том, что есть необходимость сделать дополнительные расчеты на основании результатов прямых измерений. Данные так же занесли в таблицу (см. далее). Следующие графики оказались более наглядными, что и позволило нам сделать вывод, практически подтверждающий нашу гипотезу.

Таблица № 1, данные прямых измерений давлений (мм. рт. ст)

Значение атмосферного давления

Значение артериального давления

Танина Алина

Малеева Татьяна

Агафонов Игорь

Гребенева Ирина

Сазонов Кирилл

Ярулин Максим

Петух Алёна

Гуккина Надежда

График № 1: значение атмосферного давления

График № 2: значение артериального давления двоих испытуемых

Данные эксперимента не выявили прямой зависимости между значениями давлений.

На основании того, что при сравнении данных прямых измерений вывод не совсем очевиден, мы предположили, что взаимосвязь может существовать не столько между абсолютными значениями давлений, сколько между изменениями этих значений.

Таблица № 2

Модуль разницы между текущим значением давления и следующим

в мм.рт.ст. (∆ р)

атмосферное

График № 3: изменение атмосферного давления

График № 4

Сравнение изменений атмосферного и артериального давлений

Диаграмма № 1: сравнение изменений атмосферного и артериального давлений

Выводы из данной части исследования:

    на основании анализа экспериментальных данных мы можем утверждать, что ИЗМЕНЕНИЯ атмосферного давления (в ту или иную сторону) приводят к ИЗМЕНЕНИЯМ давления артериального, что наглядно демонстрирует график № 2. То есть мы можем утверждать, что артериальное давление зависит от атмосферного, точнее изменения атмосферного давления приводят к изменению давления артериального у подростков.

Заключение

Изучение связи между здоровьем человека и атмосферными явлениями имеет длинную историю, в которой факты перемешаны с легендами. Уже отец медицины Гиппократ в своем знаменитом трактате «О воздухах, водах и местностях» изложил сущность влияния погоды на человека. Сейчас изучением этой проблемы занимаются в основном медицинские центры, специализирующиеся на лечении гипотензии и гипертензии. Мы для своего исследования выбрали один из аспектов метеочувствительности - влияние атмосферного давления на самочувствие людей подросткового возраста.

Целью нашего исследования являлось : исследовать зависимость изменений значения артериального давления крови у людей подросткового возраста от изменений значения атмосферного давления.

Мы предполагали, что такая зависимость существует, потому выдвинули гипотезу, о наличии этой зависимости.

Гипотеза исследования: исходя из информации, полученной нами из литературных и интернет источников мы предполагаем, что артериальное давление у подростков зависит от атмосферного давления.

Мы подошли к изучение данной проблемы с нескольких точек зрения. Нас заинтересовал вопрос о том, волнует ли эта проблема наших ровесников. Для решения этого вопроса мы провели интернет-опрос среди большой группы подростков, результат оказался весьма наглядным - 65% респондентов склонны считать выдвинутую нами гипотезу верной. Затем нас заинтересовал вопрос о том, что думают медицинские работки, напрямую связанные с работой с подростками о влиянии атмосферного давления на здоровье школьников. Из интервью с подростковым врачом и школьным фельдшером мы получили много полезной и показательной информации, которая тоже практически подтверждает нашу гипотезу. Далее нам кажется уместным процитировать известного философа, изобретателя и живописца Леонардо да Винчи. Он утверждал, что:

«Истолкователь ухищрений природы - опыт, он никогда не обманывает.

Те, кто изучая науки обращается не к природе, а к авторам не могут считаться сынами природы; я бы сказал, что они только её внуки.»

Перефразируя великого гения, мы хотим сказать, что только экспериментальные данные могут напрямую подтвердить или опровергнуть выдвинутую гипотезу. Потому практическая часть нашей работы представляет собой эксперимент по сравнению значений артериального и атмосферного давлений подростков в течение 10 дней и дальнейший анализ полученных данных.

Мы считаем, что поставленные задачи нами выполнены и представляем вашему вниманию частные выводы по каждой из поставленной задач, а так же общий вывод, соответствующий поставленной цели работы:

Общий вывод:

зависимость между значением атмосферного давления и значением артериального давления у подростков существует. Суть этой зависимости заключается в том, что изменения атмосферного давления в большинстве случаев приводят к изменению артериального (систолического) давления у подростков.

Мы рассмотрели лишь небольшой аспект общей проблемы влияния атмосферных явлений на здоровье человека. В процессе исследовательской работы мы получили много полезной информации, и поняли, сама проблема намного шире, чем конкретная тематика нашего исследования. Если у нас будет такая возможность, мы обязательно продолжить изучать этот вопрос и в дальнейшем рассмотрим и другие аспекты влияния атмосферных явлений на здоровье человека вообще и подростков в частности.

Список используемой литературы и интернет-ресурсов:

    Кузнецов Б.Г. Пути физической мысли. - М.: Наука, 1968, 350 стр.

    Пёрышкин А.В. Физика 7. - М.: Дрофа, 2008, 193 стр.

    Перышкин А. В , Физика 7. - М: Дрофа, 2014, 224 стр.

    Рыженков А. П. Физика, человек, окружающая среда.- М.: Просвещение, 2001, 35 стр.

    Симанов Ю. Г. Живые барометры. - М.: Знамя, 1986, 128 стр.

    Энциклопедия школьника: 4000 увлекательных факта. - М.: Махаон, 2003, 350 стр.

    http//ru.wikipedia.org

    http/www.d-med.org

    Проверочная работа включает в себя 18 заданий. На выполнение работы по физике отводится 1 час 30 минут (90 минут).

    Прочитайте перечень понятий, с которыми Вы сталкивались в курсе физики.

    Полёт самолёта, ампер, таяние льда, ньютон, электромагнитная волна, фарад.

    Разделите эти понятия на две группы по выбранному Вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.

    Выберите два верных утверждения о физических величинах или понятиях. Обведите их номера.

    1. В лифте, движущемся вниз равноускорено из состояния покоя, стоит ящик. Модуль веса ящика равен модулю силы тяжести.

    2. Ускорение - физическая величина, определяющая быстроту изменения скорости тела.

    3. Сила трения скольжения зависит от площади соприкосновения бруска и поверхности.

    4. Закон всемирного тяготения справедлив только для материальных точек.

    5. Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии.

    Показать ответ

    Ракетка прогибается от удара по теннисному мячу. Под действием какой силы прогибается ракетка?

    Показать ответ

    Сила упругости

    Прочитайте текст и вставьте пропущенные слова:

    уменьшается

    увеличивается

    не изменяется

    Слова в ответе могут повторяться.

    Ракета стартует с земли и, разгоняясь, поднимается на небольшую высоту над земной поверхностью. Во время полёта кинетическая энергия ракеты __________. В это же время потенциальная энергия ракеты __________. Можно сделать вывод, что при старте ракеты её полная механическая энергия __________.

    Показать ответ

    увеличивается, увеличивается, увеличивается

    Воздух в герметичном сосуде поместили в сосуд с водой и начали увеличивать объем. Как изменится масса воздуха, температура и давление в сосуде? Для каждой величины определите характер изменения и поставьте знак «V» в нужной клетке таблицы.


    Показать ответ

    Связанная система элементарных частиц содержит 8 электронов, 8 нейтронов и 8 протонов. Используя фрагмент Периодической системы элементов Д.И. Менделеева, определите ионом или нейтральным атомом какого элемента является эта система?

    Показать ответ

    Атом кислорода

    На рисунках приведены спектры излучения атомарных паров водорода (1), гелия (2), натрия (3), смесь вещества (4). Содержится ли в смеси вещества водород, гелий, натрий? Ответ поясните.

    Показать ответ

    водорода (1), гелия (2), натрия (3) содержится в смеси вещества

    Сколько времени потребуется нагревателю, сопротивление которого 10 Ом, чтобы произвести 250 кДж теплоты, если через него течёт электрический ток силой 10 А?

    Запишите формулы и сделайте расчёты.

    Показать ответ

    Возможный ответ

    Верно записана формула закона Джоуля - Ленца Q = I 2 Rt и получена формула для расчё­та времени t = Q/(I 2 R) = 250 000 Дж/(10 2 А 2 * 10 Ом) = 250 с.

    Расположите виды электромагнитных волн в порядке возрастания их частоты. Запишите в ответе соответствующую последовательность цифр.

    1) Ɣ-излучение

    2) радиоволны

    3) тепловое излучение

    Ответ: _____ → _____ → _____

    Показать ответ

    С помощью вольтметра проводились измерения электрического напряжения. Шкала вольтметра проградуирована в В, Погрешность измерений напряжения равна 0,5 цены деления шкалы вольтметра. Запишите в ответ показания вольтметра в В с учётом погрешности измерений.

    Показать ответ

    Учащийся исследовал зависимость длины пружины L от массы грузов, лежащих в чашке пружинных весов. Какое значение коэффициента жесткости пружины он получил с учетом погрешностей измерений (\bigtriangleup m = ±1г \bigtriangleup L = ±0.2 см)?

    Запишите в ответ показания барометра в кПа с учётом погрешности измерений.

    Показать ответ

    Вам необходимо исследовать, как зависит показатель преломления света от вещества, в котором наблюдается явление преломления света. Имеется следующее оборудование:

    Лист бумаги;

    Лазерная указка;

    Полукруглые пластинки из стекла, полистирола и горного хрусталя;

    Транспортир.

    В ответе:

    1. Опишите экспериментальную установку.

    2. Опишите порядок действий при проведении исследования.

    Показать ответ

    1. Используется установка, изображённая на рисунке. Угол падения и угол преломления измеряются при помощи транспортира.

    2. Проводятся два-три опыта, в которых луч лазерной указки направляют на пластинки из разных материалов (стекло, полистирол, горный хрусталь). Угол падения луча на плоскую грань пластинки оставляют неизменным, а угол преломления измеряют.

    3. По формуле \frac{sin\alpha}{cos\beta}=n находят показатели преломления и сравнивают.

    Установите соответствие между примерами и физическими явлениями, которые этими примерами иллюстрируются. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

    А) Лыжник, скатившийся с горки на горизонтальный участок, останавливается.

    Б) Быстродвижущийся автомобиль не может сразу остановиться.

    ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

    1) При скольжении одного тела по поверхности другого возникает сила трения скольжения.

    2) Инертность тел.

    3) При трении друг о друга двух тел происходит их электризация.

    4) Сила тяжести всегда направлена к центру Земли.

    Показать ответ

    Прочитайте текст и выполните задания 14 и 15.

    Принцип электрического нагревателя воздуха

    Электрические нагреватели воздуха бывают четырёх основных типов: электрические конвекторы, инфракрасные обогреватели, масляные обогреватели и тепловентиляторы.

    Мы поговорим только об одном из них - об электрическом конвекторе. Конвектор снабжён электрическим нагревательным элементом. Если специально подогревать воздух снизу, то он становится тёплым и перемещается наверх. На его место приходит порция холодного воздуха, который тоже нагревается и поднимается вверх. Это явление называется конвекцией. Его суть заключается в непрерывном перемещении воздушных масс из-за неравномерного нагрева различных слоев. Плотность воздуха зависит от температуры: чем теплее воздух, тем он легче. А по закону Архимеда все менее плотные тела в жидкости или газе всплывают наверх. Поэтому тёплый воздух всегда под потолком, а холодный - над полом. И так происходит до тех пор, пока весь воздух в помещении не станет примерно одинаковой температуры.

    Установить нужную температуру воздуха в помещении можно с помощью рукоятки терморегулятора, установив её в положение, соответствующее определённой температуре.

    Что же происходит дальше? Чтобы происходил нагрев, электрическая цепь конвектора должна быть замкнута. Терморегулятор должен размыкать её, если температура воздуха стала слишком высокой. Но при понижении температуры воздуха он должен автоматически замкнуть её снова, чтобы воздух продолжал нагреваться. Для этого терморегулятор оснащают подвижным элементом. Поворачивая ручку, мы меняем угол наклона этого элемента.

    Датчик температуры конвектора имеет пластинку, выполненную из материала с высоким коэффициентом температурного расширения. Чем сильнее пластинка нагревается, тем сильнее она изгибается. Пока воздух холодный, пластинка контактирует с подвижным элементом терморегулятора. Пластинка меняет своё положение в зависимости от степени нагрева воздуха. Чем жарче, тем сильнее она отклоняется. И отклоняться она будет до тех пор, пока не разомкнёт цепь. Причём это произойдёт быстрее, если установить более низкую температуру.

    При разомкнутой цепи нагрев не идёт, поэтому воздух охлаждается. Пластинка на термодатчике тоже охлаждается и возвращается в исходное положение - к элементу терморегулятора, угол наклона которого задаёт пользователь. Цепь снова замыкается, и воздух нагревается.

    Какое физическое явление лежит в основе действия электрического конвектора?

    Показать ответ

    Явление теплой конвекции

    Выберите из предложенного перечня два верных утверждения и запишите номера, под которыми они указаны.

    Опыт Торричелли.
    Рассчитать атмосферное давление по формуле для вычисления давления столба жидкости (§ 39) нельзя. Для такого расчёта надо знать высоту атмосферы и плотность воздуха. Но определённой границы у атмосферы нет, а плотность воздуха на разной высоте различна. Однако измерить атмосферное давление можно с помощью опыта, предложенного в XVII в. итальянским учёным Эванджелиста Торричелли, учеником Галилея.

    Опыт Торричелли состоит в следующем: стеклянную трубку длиной около 1 м, запаянную с одного конца, наполняют ртутью. Затем, плотно закрыв другой конец трубки, её переворачивают, опускают в чашку с ртутью и под ртутью открывают конец трубки (рис. 130). Часть ртути при этом выливается в чашку, а часть её остаётся в трубке. Высота столба ртути, оставшейся в трубке, равна примерно 760 мм. Над ртутью в трубке воздуха нет, там безвоздушное пространство.

    Торричелли, предложивший описанный выше опыт, дал и его объяснение. Атмосфера давит на поверхность ртути в чашке. Ртуть находится в равновесии. Значит, давление в трубке на уровне аа 1 (см. рис. 130) равно атмосферному давлению. Если бы оно было больше атмосферного, то ртуть выливалась бы из трубки в чашку, а если меньше, то поднималась бы в трубке вверх.

    Давление в трубке на уровне аа х создаётся весом столба ртути в трубке, так как в верхней части трубки над ртутью воздуха нет. Отсюда следует, что атмосферное давление равно давлению столба ртути в трубке, т. е.

    p атм = p ртути

    Измерив высоту столба ртути, можно рассчитать давление, которое производит ртуть. Оно и будет равно атмосферному давлению. Если атмосферное давление уменьшится, то столб ртути в трубке Торричелли понизится.

    Чем больше атмосферное давление, тем выше столб ртути в опыте Торричелли. Поэтому на практике атмосферное давление можно измерять высотой ртутного столба (в миллиметрах или сантиметрах). Если, например, атмосферное давление равно 780 мм рт. ст., то это значит, что воздух производит такое же давление, какое производит вертикальный столб ртути высотой 780 мм.

    Следовательно, в этом случае за единицу атмосферного давления принимают 1 миллиметр ртутного столба (1 мм рт. ст.). Найдём соотношение между этой единицей и известной нам единицей давления - паскалем (Па).

    Давление столба ртути p ртути высотой 1 мм равно

    p = gρh,

    р = 9,8 Н/кг ∙ 13 600 кг/м 3 ∙ 0,001 м ≈ 133,3 Па.

    Итак, 1 мм рт. ст. = 133,3 Па.

    В настоящее время атмосферное давление принято измерять и в гектопаскалях. Например, в сводках погоды может быть объявлено, что давление равно 1013 гПа, это то же самое, что 760 мм рт. ст.

    Наблюдая ежедневно за высотой ртутного столба в трубке, Торричелли обнаружил, что эта высота меняется, т. е. атмосферное давление непостоянно, оно может увеличиваться и уменьшаться. Торричелли заметил также, что изменения атмосферного давления связаны с изменением погоды.

    Если к трубке с ртутью, использовавшейся в опыте Торричелли, прикрепить вертикальную шкалу, то получится простейший прибор - ртутный барометр (от греч. барос - тяжесть, метрео - измеряю). Он служит для измерения атмосферного давления.

    Такой опыт был проведён, он показал, что давление воздуха на вершине той горы, где проводились опыты, было почти на 100 мм рт. ст. меньше, чем у подножия горы. Но Паскаль этим опытом не ограничился. Чтобы ещё раз доказать, что ртутный столб в опыте Торричелли удерживается атмосферным давлением, Паскаль поставил другой опыт, который он образно назвал доказательством «пустоты в пустоте».

    Опыт Паскаля можно осуществить с помощью прибора, изображённого на рисунке 134, а, где А - прочный полый стеклянный сосуд, в который пропущены и впаяны две трубки: одна - от барометра Б, другая (трубка с открытыми концами) - от барометра В.

    Прибор устанавливают на тарелку воздушного насоса. В начале опыта давление в сосуде А равно атмосферному, оно измеряется разностью высот h столбов ртути в барометре Б. В барометре же В ртуть стоит на одном уровне. Затем из сосуда А воздух выкачивается насосом. По мере удаления воздуха уровень ртути в левом колене барометра Б понижается, а в левом колене барометра В повышается. Когда воздух будет полностью удалён из сосуда А, уровень ртути в узкой трубке барометра Б упадёт и сравняется с уровнем ртути в его широком колене. В узкой же трубке барометра В ртуть под действием атмосферного давления поднимается на высоту h (рис. 134, б). Этим опытом Паскаль ещё раз доказал существование атмосферного давления.

    Опыты Паскаля окончательно опровергли теорию Аристотеля о «боязни пустоты» и подтвердили существование атмосферного давления.

    Барометр — анероид

    В практике для измерения атмосферного давления используют металлический барометр, называемый анероидом (в переводе с греческого - «безжидкостный». Так барометр называют потому, что он не содержит ртути).Внешний вид анероида изображён на рисунке 135. Главная часть его - металлическая коробочка 1 с волнистой (гофрированной) поверхностью (рис. 136). Из этой коробочки выкачан воздух, а чтобы атмосферное давление не раздавило коробочку, её крышку пружиной 2 оттягивают вверх. При увеличении атмосферного давления крышка прогибается вниз и натягивает пружину. При уменьшении давления пружина выпрямляет крышку. К пружине с помощью передаточного механизма 3 прикреплена стрелка-указатель 4, которая передвигается вправо или влево при изменении давления. Под стрелкой укреплена шкала, деления которой нанесены по показаниям ртутного барометра. Так, число 750, против которого стоит стрелка анероида (см. рис. 135), показывает, что в данный момент в ртутном барометре высота ртутного столба 750 мм.

    Следовательно, атмосферное давление равно 750 мм рт. ст., или ~ 1000 гПа.

    Знание атмосферного давления весьма важно для предсказывания погоды на ближайшие дни, так как изменение атмосферного давления связано с изменением погоды. Барометр - необходимый прибор при метеорологических наблюдениях.

    Атмосферное давление на различных высотах .

    В жидкости давление, как мы знаем (§ 38), зависит от плотности жидкости и высоты её столба. Вследствие малой сжимаемости плотность жидкости на различных глубинах почти одинакова. Поэтому, вычисляя давление жидкости, мы считаем её плотность постоянной и учитываем только изменение высоты.

    Сложнее обстоит дело с газами. Газы хорошо сжимаемы. А чем сильнее газ сжат, тем больше его плотность и тем большее давление он производит на окружающие тела. Ведь давление газа создаётся ударами его молекул о поверхность тела.

    Слои воздуха у поверхности Земли сжаты всеми слоями воздуха, находящимися над ними. Но чем выше от поверхности слой воздуха, тем слабее он сжат, тем меньше его плотность. Следовательно, тем меньшее давление он производит. Если, например, воздушный шар поднимается над поверхностью Земли, то давление воздуха на шар становится меньше. Это происходит не только потому, что высота столба воздуха над ним уменьшается, но ещё и потому, что уменьшается плотность воздуха. Вверху она меньше, чем внизу. Поэтому зависимость давления от высоты для воздуха сложнее, чем аналогичная зависимость для жидкости.

    Наблюдения показывают, что атмосферное давление в местностях, лежащих на уровне моря, в среднем равно 760 мм рт. ст.

    Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0°С, называется нормальным атмосферным давлением.

    Нормальное атмосферное давление равно 101 300 Па = 1013 гПа.

    Чем больше высота над уровнем моря, тем давление воздуха в атмосфере меньше.

    При небольших подъёмах в среднем на каждые 12 м подъёма давление уменьшается на 1 мм рт. ст. (или на 1,33 гПа).

    Зная зависимость давления от высоты, можно по изменению показаний барометра определить высоту над уровнем моря. Анероиды, имеющие шкалу, по которой непосредственно можно отсчитать высоту, называют высотомерами (рис. 137). Их применяют в авиации и при подъёмах на горы.

    Домашнее задание:
    I. Учить §§ 44 – 46.
    II. Ответить на вопросы:
    1. Почему нельзя рассчитывать давление воздуха так же, как рассчитывают давление жидкости на дно или стенки сосуда?
    2. Объясните, как с помощью трубки Торричелли можно измерить атмосферное давление.
    3. Что означает запись: «Атмосферное давление равно 780 мм рт. ст.»?
    4. Скольким гектопаскалям равно давление ртутного столба высотой 1 мм?

    5. Как устроен барометр-анероид?
    6. Как градуируют шкалу барометра-анероида?
    7. Для чего необходимо систематически и в разных местах земного шара измерять атмосферное давление? Какое значение это имеет в метеорологии?

    8. Как объяснить, что атмосферное давление уменьшается по мере увеличения высоты подъёма над уровнем Земли?
    9. Какое атмосферное давление называют нормальным?
    10. Как называют прибор для измерения высоты по атмосферному давлению? Что он собой представляет? Отличается ли его устройство от устройства барометра?
    III. Решить упражнение 21:
    1. На рисунке 131 изображён водяной барометр, созданный Паскалем в 1646 г. Какой высоты был столб воды в этом барометре при атмосферном давлении, равном 760 мм рт. ст.?
    2. В 1654 г. Отто Герике в г. Магдебурге, чтобы доказать существование атмосферного давления, провёл такой опыт. Он выкачал воздух из полости между двумя металлическими полушариями, сложенными вместе. Давление атмосферы так сильно прижало полушария друг к другу, что их не могли разорвать восемь пар лошадей (рис. 132). Вычислите силу, сжимающую полушария, если считать, что она действует на площадь, равную 2800 см 2 , а атмосферное давление равно 760 мм рт. ст.
    3. Из трубки длиной 1 м, запаянной с одного конца и с краном на другом конце, выкачали воздух. Поместив конец с краном в ртуть, открыли кран. Заполнит ли ртуть всю трубку? Если вместо ртути взять воду, заполнит ли она всю трубку?
    4. Выразите в гектопаскалях давление, равное: 740 мм рт. ст.; 780 мм рт. ст.
    5. Рассмотрите рисунок 130. Ответьте на вопросы.
    а) Почему для уравновешивания давления атмосферы, высота которой достигает десятков тысяч километров, достаточно столба ртути высотой около 760 мм?
    б) Сила атмосферного давления действует на ртуть, находящуюся в чашке, сверху вниз. Почему же атмосферное давление удерживает столб ртути в трубке?
    в) Как повлияло бы наличие воздуха в трубке над ртутью на показания ртутного барометра?
    г) Изменится ли показание барометра, если трубку наклонить; опустить глубже в чашку со ртутью?
    IV. Решить упражнение 22:
    Рассмотрите рисунок 135 и ответьте на вопросы.
    а) Как называется изображённый на рисунке прибор?
    б) В каких единицах проградуированы его внешняя и внутренняя шкалы?
    в) Вычислите цену деления каждой шкалы.
    г) Запишите показания прибора по каждой шкале.
    V. Выполнить задание на стр. 131 (по возможности):
    1. Погрузите стакан в воду, переверните его под водой вверх дном и затем медленно вытаскивайте из воды. Почему, пока края стакана находятся под водой, вода остаётся в стакане (не выливается)?
    2. Налейте в стакан воды, закройте листом бумаги и, поддерживая лист рукой, переверните стакан вверх дном. Если теперь отнять руку от бумаги (рис. 133), то вода из стакана не выльется. Бумага остаётся как бы приклеенной к краю стакана. Почему? Ответ обоснуйте.
    3. Положите на стол длинную деревянную линейку так, чтобы её конец выходил за край стола. Сверху застелите стол газетой, разгладьте газету руками, чтобы она плотно лежала на столе и линейке. Резко ударьте по свободному концу линейки - газета не поднимется, а прорвётся. Объясните наблюдаемые явления.
    VI. Читать текст на стр. 132: «Это любопытно…»
    История открытия атмосферного давления
    Изучение атмосферного давления имеет большую и поучительную историю. Как и многие другие научные открытия, оно тесно связано с практическими потребностями людей.

    Устройство насоса было известно ещё в глубокой древности. Однако и древнегреческий учёный Аристотель, и его последователи объясняли движение воды за поршнем в трубе насоса тем, что «природа боится пустоты». Истинная же причина этого явления - давление атмосферы - им была неизвестна.

    В конце первой половины XVII в. во Флоренции - богатом торговом городе Италии - строили так называемые всасывающие насосы. Он состоит из вертикально расположенной трубы, внутри которой имеется поршень. При подъёме поршня вверх за ним поднимается вода (см. рис. 124). При помощи этих насосов хотели поднимать воду на большую высоту, но насосы «отказывались» это делать.

    Обратились за советом к Галилею. Галилей исследовал насосы и нашёл, что они исправны. Занявшись этим вопросом, он указал, что насосы не могут поднять воду выше, чем на 18 итальянских локтей (~ 10 м). Но разрешить вопрос до конца он не успел. После смерти Галилея эти научные исследования продолжил его ученик - Торричелли. Торричелли занялся и изучением явления поднятия воды за поршнем в трубе насоса. Для опыта он предложил использовать длинную стеклянную трубку, а вместо воды взять ртуть. Впервые такой опыт (§ 44) был проделан его учеником Вивиани в 1643 г.

    Раздумывая над этим опытом, Торричелли пришёл к заключению, что истинной причиной поднятия в трубке ртути является давление воздуха, а не «боязнь пустоты». Это давление производит воздух своим весом. (А что воздух имеет вес - было уже доказано Галилеем.)

    Об опытах Торричелли узнал французский учёный Паскаль. Он повторил опыт Торричелли с ртутью и водой. Однако Паскаль считал, что для окончательного доказательства факта существования атмосферного давления необходимо проделать опыт Торричелли один раз у подножия какой-нибудь горы, а другой раз на вершине её и измерить в обоих случаях высоту ртутного столба в трубке. Если бы на вершине горы столб ртути оказался ниже, чем у подножия её, то отсюда следовало бы заключить, что ртуть в трубке действительно поддерживается атмосферным давлением.

    «Легко понять, - говорил Паскаль, - что у подножия горы воздух оказывает большее давление, чем на вершине её, меж тем как нет никаких оснований предполагать, чтобы природа испытывала большую боязнь пустоты внизу, чем вверху».

    Муниципальное казенное образовательное учреждение

    Залесовская ООШ

    Проектно-исследовательская работа

    по физике

    «Исследование атмосферного давления».

    Выполнила: Соломатова Ангелина,

    Руководитель:

    Залесово

    1. Введение 3-4

    2. Глава 1. Проявление атмосферного давления 5-6

    3. Глава 2. Измерение атмосферного давления. 7-8

    4. Глава 3. Выявление зависимости атмосферного 9

    давления от высоты

    6. Заключение. 12

    7. Список литературы. 13

    I. Введение.

    атмосферой.

    В результате этого земная поверхность и тела, находящиеся на ней, испытывают давление всей толщи воздуха, или, как обычно говорят, испыты­вают атмосферное давление.

    Вокруг нас происходит много удивительного. Однажды, сидя на кухне, обратил внимание на хлопок у окна. Это закрытые пластиковые бутылки с питьевой водой, которые стоят около подоконника и издают хлопок через некоторое время после открытия и закрытия форточки. Я стал наблюдать за бутылками. Оказалось, что с открытой форточкой бутылка сжимается, закрываешь форточку – она расправляется. Меня заинтересовало, почему так происходит?


    Я решила исследовать это явление.

    · выяснение параметров, от которых зависит атмосферное давление;

    · изучение влияния атмосферного давления на процессы, протекающие в живой природе.

    Выяснить:

    · зависимость атмосферного давления от высоты над уровнем моря;

    · зависимость силы атмосферного давления от площади поверхности тела;

    · роль атмосферного давления в живой природе.

    Пронаблюдат ь проявления атмосферного давления.

    Мы живём на дне воздушного океана. Над нами – огромная толща воздуха. Воздушную оболочку, окружающую Землю, на­зывают атмосферой (от греч. атмос - пар, воздух и сфера - шар).

    Атмосфера, как показали наблюдения за поле­том искусственных спутников Земли, простирается на высоту нескольких тысяч километров. А воздух, как он не лёгок, всё же имеет вес.

    Вследствие действия силы тяжести верхние слои воздуха, подобно воде океана, сжимают ниж­ние слои. Воздушный слой, прилегающий непо­средственно к Земле, сжат больше всего и, согласно закону Паскаля, передает производимое на него давление по всем направлениям.

    В результате этого земная поверхность и тела, находящиеся на ней, испытывают давление всей толщи воздуха, или, как обычно говорят, испыты­вают атмосферное давление.

    Каким же образом выдерживают живые организмы такие огромные нагрузки?

    Как можно измерить атмосферное давление и от чего оно зависит?

    Глава1. Проявления атмосферного давления.

    Существованием атмосферного давления могут быть объяснены многие явления, с которыми мы встречаемся в повседневной жизни. Особенно меня заинтересовали занимательные опыты. Я провела опыты, которые можно объяснить существованием атмосферного давления.

    Опыт1.

    https://pandia.ru/text/78/181/images/image002_103.jpg" width="120" height="166 src=">

    Взяла две пробирки, входящие друг в друга. В «большую пробирку налила воды и вставила меньшую. Прибор перевернула. Вода вытекла по каплям, а внутренняя пробирка поднимется вверх.

    Объяснение: Когда вода вытекает, давление между стенками пробирок становится меньше атмосферного и атмосферный воздух, действуя изнутри на малую пробирку, поднимает ее вверх..

    Опыт 3.

    Положила на плоскую тарелку монету и налила немного воды. Монета очутилась под водой. Теперь необходимо взять монету голой рукой, не замочив пальцев и не выливая воду из тарелки. Для этого надо воду отсосать. Взяла тонкий стакан, ополоснула его кипятком и опрокинула на тарелку рядом с монетой. Вода собралась под стаканом.

    Объяснение: воздух в стакане начнет остывать. Холодный воздух занимает меньше места, чем горячий. Стакан, словно медицинская кровососная банка, начнет всасывать воду, и вскоре вся она соберется под ним. Теперь можно подождать, пока монета высохнет, и бери ее, не боясь замочить пальцы.

    Глава 2. Измерение атмосферного давления и силы атмосферного давления.


    С помощью барометра-анероида измерила атмосфер­ное давление. Затем измерила необходимые размеры тел: крышка стола, учебник, пенал и вычис­лила площади их поверхностей. Пользуясь формулой, F = р S рассчитала силу атмосферного давления на поверхность стола, учебника и пенала.

    Номер опыта

    Атмосферное давление

    Площадь тела,

    Сила атмосферного

    давления,

    мм. рт. ст.

    Поверхность стола

    Поверхность учебника

    Поверхность пенала

    Вывод: Атмосферное давление меняется ежедневно, а это значит, что сила атмосферного давления также изменяется.

    Сила атмосферного давления при одном и том же атмосферном давлении различна и зависит от площади поверхности тела. Чем больше поверхность тела, тем большее воздействие на него оказывает атмосфера.

    На тело человека, поверхность которого при массе в 60кг и росте 160 см, примерно равна 1,6 м2 , действует сила в 160000 Н, обусловленная атмосферным давлением.

    Живые организмы выдерживают такие огромные нагрузки благодаря тому, что давление жидкостей, заполняющих сосуды тела, уравновешивает внешнее атмосферное давление.

    Глава 3. Выявление зависимости атмосферного давления от высоты

    Для того чтобы выявить зависимость атмосферного давления от высоты я измеряла атмосферное давление на различных этажах трехэтажнго дома. Высоту определила приблизительно, по высоте этажа.

    Номер опыта

    Атмосферное давление

    Высота, м

    мм. рт. ст.

    Вывод : величина атмосферного давления убывает с ростом высоты над уровнем моря.

    Глава 4 . Изготовление барометра

    1.Такой барометр может изготовить любой, имея под рукой следующие приборы:

    Банка стеклянная с широкой горловиной

    Воздушный шарик

    Зубочистка

    Трубочка

    Лист картона

    Ножницы

    Цветные карандаши или заготовки изображений «солнце» и «туча».

    2. Изготовление мембраны

    Используя ножницы, отрезается горловина воздушного шарика . При выполнении работы необходимо острые концы ножниц держать «от себя». Ненужные в данный момент приспособления и инструменты должны быть размещены в удалении от рабочего пространства.

    3. Крепление мембраны

    Мембрана крепится на верней открытой поверхности банки. Выбор банки обусловлен жёсткостью материала, из которого она изготовлена. При выполнении операции желательно придерживать банку ассистенту.

    Мембрана крепится на горловине банки с помощью изоляционной ленты или скотча. При креплении необходимо обеспечить герметичность банки.

    3.Изготовление стрелки барометра

    Трубочка для изготовления стрелки отрезается такой длины, чтобы её длина от центра горловины до края банки была равна её длине за пределами банки.

    Для изготовления стрелки используется зубочистка и трубочка. Зубочистка и трубочка крепятся друг к другу скотчем.

    Стрелка крепится к поверхности мембраны с помощью скотча. При креплении необходимо конец стрелки разместить в районе центра мембраны таким образом, чтобы она могла «качаться» на краю банки. При работе важно закрепить стрелку с первого раза для предотвращения нарушения целостности мембраны.

    4.Изготовление шкалы барометра

    Для изготовления шкалы используется лист картона, нижний край которого загибается. Стрелка барометра должна быть расположена по центру вертикальной плоскости.

    5.Изготовление шкалы бароме тра

    Для изготовления шкалы барометра используются либо заготовки изображения «солнца» и «тучи», или их рисованные изображения, которые наносятся на вертикальную часть шкалы. Солнце – в верхнюю часть, туча – в нижнюю.

    6.Крепление шкалы

    Изготовленная шкала крепится к барометру с помощью скотча. Крепление должно обеспечивать жёсткость конструкции

    Внешний вид барометра

    7.Принцип действия

    Давление внутри барометра постоянно. При увеличении атмосферного давления воздух давит на мембрану, заставляя её прогибаться. В результате прогиба стрелка перемещается в сторону «солнца», что свидетельствует о предстоящей солнечной безоблачной погоде.

    Давление внутри барометра постоянно. При понижении атмосферного давления мембрана прогибается наружу, стрелка перемещается в сторону «тучи», что свидетельствует о предстоящем наступлении ненастной погоды.

    6. Заключение.

    Вывод.

    В результате работы:

    Я научилась определять с помощью барометра атмосферное давление;

    Провёла опыты, доказывающие существование атмосферного давления;

    Измерение атмосферного давления и силы атмосферного давления.

    Выявление зависимости атмосферного давления от высоты.

    Изготовила барометр.

    Я понимаю, что при выполнении реферата, мир знаний не полностью изучен мною. Мне понравилось изучать давление, делать опыты. Но в мире много интересного, что можно ещё узнать, поэтому в дальнейшем:

    я буду продолжать изучение этой интересной науки.

    Я надеюсь, что мои одноклассники заинтересуются этой проблемой, а я постараюсь помочь им.

    В дальнейшем я продолжу изучать состав воздуха.

    Проводить новые эксперименты

    Список литературы:

    1., элективный курс «»Элементы биофизики » - М., «Вако», 2007г.

    2. И., Занимательные материалы к урокам – М., «Издательство НЦ ЭНАС», 2006г.

    3. А, Поурочные разработки по физике,7кл. – М. «Вако», 2005г.

    4., Как организовать проектную деятельность учащихся, М., «Аркти», 2006г.