Морской гидробионт

Пресноводный гидробионт

Гидробионты - морские и пресноводные организмы, постоянно обитающие в водной среде. К гидробионтам также относятся организмы, живущие в воде часть жизненного цикла, то есть земноводные . Существуют морские и пресноводные гидробионты, а также живущие в естественной или искусственной среде, имеющие промышленное значение и не ставшие таковыми. Промышленное рыболовство , аквариумистика и тому подобные виды деятельности занимаются гидробионтами.

Гидробиология

Гидробиология - наука о жизни и биологических процессах в воде.

Промышленное использование гидробионтов

Промышленные и любительские водные промыслы занимаются гидробионтами. Дикая водная природа с давних времен является предметом воздействия хозяйственной деятельности человека.

Примечания

Wikimedia Foundation . 2010 .

Смотреть что такое "Гидробионты" в других словарях:

    - (от гидро... и бионт), растения, животные и микроорганизмы, населяющие морские и материковые водоёмы. .(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. 2 е… … Биологический энциклопедический словарь

    - (от лат. hydros вода и biоn живущий) водные организмы. Ср. аэробионты. Экологический словарь. Алма Ата: «Наука». Б.А. Быков. 1983 … Экологический словарь

    Гидробионты - водные животные, растения и микроорганизмы, обитающие в морских и пресных водоемах... Источник: МОДЕЛЬНЫЙ ЗАКОН ОБ АКВАКУЛЬТУРЕ … Официальная терминология

    гидробионты - (организмы, обитающие в воде) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN hydrobiontes … Справочник технического переводчика

    гидробионты - 3.1.9 гидробионты: Все живые организмы, животные и растительные, развивающиеся и существующие в воде и донных отложениях водоемов и водотоков . Источник: Р 52.24.763 2012: Оценка состояния пресноводных экосистем по комплексу химико… … Словарь-справочник терминов нормативно-технической документации

    - (см. гидро... + бионт) организмы, обитающие в водной среде ср. аэробионты). Новый словарь иностранных слов. by EdwART, 2009. гидробионты ов, ед. гидробионт, а, м. (… Словарь иностранных слов русского языка

    гидробионты - hidrobiontai statusas T sritis ekologija ir aplinkotyra apibrėžtis Vandenyje gyvenantys organizmai: augalai ir gyvūnai. atitikmenys: angl. aquatic organisms; water organisms vok. aquatische Organismen, m; Hydrobionten, m; Wasserbewohner, m;… … Ekologijos terminų aiškinamasis žodynas

    - (от Гидро... и Бионт) организмы, обитающие в воде; см. Водные животные и Водные растенияБольшая советская энциклопедия

    Гидробионты - (от гидро и бионт) организмы, постоянные обитатели водной среды. Различают мариобионты (обитатели океана) и аквабионты (обитатели пресных вод) … Начала современного естествознания

    гидробионты - гидроби онты, ов, ед. ч. онт, а … Русский орфографический словарь

Книги

  • Барьерная технология гидробионтов , . Рассмотрено современное направление технологии пищевых продуктов, обеспечивающее минимизацию противоречий между качеством и стойкостью продукта. Охарактеризованы гидробионты как объекты,…
  • Летательные и подводные аппараты с машущими движителями , Ахмедов Темир Хусаинович. В книге изложены результаты исследований в области машущих движителей, аналогами которых являются природные объекты - аэробионты (птицы и насекомые с быстромашущими крыльями), а также…

Приспособленный к обитанию в водной среде (биотопе). Гидробионтами (водными организмами) являются, например, рыбы , губки , стрекающие , иглокожие , большая часть ракообразных и моллюсков .

Определения

Гидробионты - морские и пресноводные организмы, постоянно обитающие в водной среде. К гидробионтам также относятся организмы, живущие в воде часть жизненного цикла, например, большинство представителей земноводных , комары , стрекозы и др. Существуют морские и пресноводные гидробионты, а также живущие в естественной или искусственной среде, имеющие промышленное значение и не ставшие таковыми.

Промышленное рыболовство , аквариумистика и им подобные виды деятельности занимаются гидробионтами.

Гидробиология

Гидробиология - наука о жизни и биологических процессах в воде.

Разнообразие гидробионтов

  • Пелагические организмы - растения или животные, обитающие в толще или на поверхности воды.
    • Нейстон - совокупность микроорганизмов, живущих у поверхностной плёнки воды на границе водной и воздушной сред.
    • Плейстон - растительные или животные организмы, обитающие на поверхности воды, или полупогруженные в воду.
    • Реофилы - животные, приспособившиеся к обитанию в текущих водах.
    • Нектон - совокупность водных активно плавающих организмов, способных противостоять силе течения.
    • Планктон - разнородные, в основном мелкие организмы, свободно дрейфующие в толще воды и не способные сопротивляться течению.
  • Бентос - совокупность организмов, обитающих на грунте и в грунте дна водоёмов.

Промышленное использование гидробионтов

Промышленные и любительские водные промыслы занимаются добычей гидробионтов. Природные водоёмы и водотоки с давних времен являются предметом воздействия хозяйственной деятельности человека. В последнее время, в основном за XX-XXI века, получила широкое развитие также аквакультура - культивирование гидробионтов в природных или искусственных водоёмах.

Напишите отзыв о статье "Гидробионт"

Литература

  • Жизнь пресных вод СССР, т. 1-4, М., 1940-59;
  • Жадин В. И. , Методы гидробиологического исследования, М., 1960;
  • Зенкевич Л. А., Фауна и биологическая продуктивность моря, т. 1, М., 1951; его же, Биология морей СССР, М., 1963; его же, Изучение фауны морей и океанов, в кн.: Развитие биологии в СССР, М., 1967;
  • Винберг Г. Г. Гидробиология пресных вод, в кн.: Развитие биологии в СССР, М., 1967;
  • Константинов А. С., Общая гидробиология, М., 1967.
  • О роли гидробионтов в регуляции потоков вещества и миграции элементов в водных экосистемах // Вестник РАЕН. 2002. Т. 2. № 3. С. 50-54.

Ссылки

  • Водные животные // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров
  • Водные растения // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.

Отрывок, характеризующий Гидробионт

6 го октября, рано утром, Пьер вышел из балагана и, вернувшись назад, остановился у двери, играя с длинной, на коротких кривых ножках, лиловой собачонкой, вертевшейся около него. Собачонка эта жила у них в балагане, ночуя с Каратаевым, но иногда ходила куда то в город и опять возвращалась. Она, вероятно, никогда никому не принадлежала, и теперь она была ничья и не имела никакого названия. Французы звали ее Азор, солдат сказочник звал ее Фемгалкой, Каратаев и другие звали ее Серый, иногда Вислый. Непринадлежание ее никому и отсутствие имени и даже породы, даже определенного цвета, казалось, нисколько не затрудняло лиловую собачонку. Пушной хвост панашем твердо и кругло стоял кверху, кривые ноги служили ей так хорошо, что часто она, как бы пренебрегая употреблением всех четырех ног, поднимала грациозно одну заднюю и очень ловко и скоро бежала на трех лапах. Все для нее было предметом удовольствия. То, взвизгивая от радости, она валялась на спине, то грелась на солнце с задумчивым и значительным видом, то резвилась, играя с щепкой или соломинкой.
Одеяние Пьера теперь состояло из грязной продранной рубашки, единственном остатке его прежнего платья, солдатских порток, завязанных для тепла веревочками на щиколках по совету Каратаева, из кафтана и мужицкой шапки. Пьер очень изменился физически в это время. Он не казался уже толст, хотя и имел все тот же вид крупности и силы, наследственной в их породе. Борода и усы обросли нижнюю часть лица; отросшие, спутанные волосы на голове, наполненные вшами, курчавились теперь шапкою. Выражение глаз было твердое, спокойное и оживленно готовое, такое, какого никогда не имел прежде взгляд Пьера. Прежняя его распущенность, выражавшаяся и во взгляде, заменилась теперь энергической, готовой на деятельность и отпор – подобранностью. Ноги его были босые.
Пьер смотрел то вниз по полю, по которому в нынешнее утро разъездились повозки и верховые, то вдаль за реку, то на собачонку, притворявшуюся, что она не на шутку хочет укусить его, то на свои босые ноги, которые он с удовольствием переставлял в различные положения, пошевеливая грязными, толстыми, большими пальцами. И всякий раз, как он взглядывал на свои босые ноги, на лице его пробегала улыбка оживления и самодовольства. Вид этих босых ног напоминал ему все то, что он пережил и понял за это время, и воспоминание это было ему приятно.
Погода уже несколько дней стояла тихая, ясная, с легкими заморозками по утрам – так называемое бабье лето.
В воздухе, на солнце, было тепло, и тепло это с крепительной свежестью утреннего заморозка, еще чувствовавшегося в воздухе, было особенно приятно.
На всем, и на дальних и на ближних предметах, лежал тот волшебно хрустальный блеск, который бывает только в эту пору осени. Вдалеке виднелись Воробьевы горы, с деревнею, церковью и большим белым домом. И оголенные деревья, и песок, и камни, и крыши домов, и зеленый шпиль церкви, и углы дальнего белого дома – все это неестественно отчетливо, тончайшими линиями вырезалось в прозрачном воздухе. Вблизи виднелись знакомые развалины полуобгорелого барского дома, занимаемого французами, с темно зелеными еще кустами сирени, росшими по ограде. И даже этот разваленный и загаженный дом, отталкивающий своим безобразием в пасмурную погоду, теперь, в ярком, неподвижном блеске, казался чем то успокоительно прекрасным.

Гидробионты - все живые организмы - животные, растения, бактерии, развивающиеся и существующие в водной массе и донных отложениях водоемов и водотоков.[ ...]

Разведение и выращивание гидробионтов в частично контролируемых или полностью неконтролируемых условиях- это пастбищная аквакультура: выращивание происходит почти исключительно на естественных кормах. Иногда этот тип аквакультуры называют экстенсивным.[ ...]

Химическое воздействие на гидробионтов усилилось сбросом токсических веществ, входящих в состав сбросных вод. Они включают соли стронция, брома, лития и другие высокотоксичные вещества, в воде и донных отложениях обнаружен таллий. Токсиканты депонируются в мышцах и органах рыб, продукты питания из которой становятся опасными для человека. В Вилюе у исследованных рыб выявлено превышение ПДК по хрому в 3 раза (окунь), по никелю - в 2-4 раза (щука, плотва, налим), по свинцу - в 2 раза [Экология..., 1992].[ ...]

Биохимическая деятельность гидробионтов является доминирующим процессом в самоочищении водоема. Но среди гидробионтов немало организмов, массовое развитие которых может принести и значительный вред.[ ...]

Разнообразие условий обитания гидробионтов на полигоне определило большую неоднородность распределения зоопланктона. В июле колебания биомассы ракообразных составили 0,2-2,3 г/м3. На мелководных участках сублиторали (ст. 3, 4, 9, 10, 14) наблюдались биомассы зоопланктона 0,2-0,7 г/м3, по руслу р. Мологи - 0,9-2,0 г/м3 (ст. 3, 11, 13, 24, 25, 26), в северной части, где имеется пролив,- от 0,8 до 2,3 г/м3 (ст. 17, 18, 20, 21, 29).[ ...]

Как отмечали многие авторы, все гидробионты являются в какой-то мере очистителями воды, отсюда и развилась тенденция возлагать слишком большие надежды на процессы самоочищения воды в естественных водоемах. Но все гидробионты, особенно растения и так называемые микроорганизмы, являются в то же время и загрязнителями воды. После отмирания нитчатых, зеленых и синезеленых водорослей выделенные продукты разложения могут настолько ухудшить качество воды, что она становится не пригодной для питьевых целей. Многие авторы предлагали предупреждать возможность возникновения «цветения» воды, воздействуя на нее солями тяжелых металлов или пестицидами (Гусева, 1952; Драчев, 1956, 1964).[ ...]

Большие различия в чувствительности гидробионтов к тяжелым металлам, а также и к гербицидам (симметричный триазин и производные мочевины) описаны также в работе [И]. Поэтому набор тест-объектов должен быть достаточно разнообразным. Для выявления самого факта токсичности водной среды и указания на необходимость поиска в ней токсичного вещества целесообразно пользоваться наиболее чувствительными тест-объ-ектами.[ ...]

Дрейссена-один из наиболее изученных гидробионтов внутренних водоемов. Ей посвящен обширный объем публикаций, насчитывающий тысячи наименований (Лиманова, 1964; Дрейссена, 1994). Она населяет различные водоемы и быстро расселяется за счет планктонных личинок - велигеров. В Европе дрейссена широко распространена как в пресных, так и в солоноватых водоемах и характеризуется большой изменчивостью формы, размера, веса, продолжительности жизни (Станьчиковская, 1977). За последние 60 лет она заселила более 100 водоемов Белоруссии, в результате чего происходила перестройка всей экосистемы озер (Ляхнович и др., 1988; Каратаев и др., 1991) Высокая экологическая пластичность дрейссены предполагает дальнейшее расширение ее ареала, в том числе появление в водоемах Западной Сибири (Шкорбатов, 1981). Целенаправленное или стихийное расселение дрейссены по водоемам разных географических зон должно быть в центре внимания экологов, чтобы предупредить возможный вред аборигенной фауне и изменение естественного процесса функционирования экосистем в нежелательном направлении.[ ...]

Население толщи воды И дна водоема. Все гидробионты можно разделить в зависимости от места их обитания и водоема на население толщи воды и население дна бассейна. В населении толщи воды различают три группы, которые называются планктон, нектон и нейстон.[ ...]

Описание поведения некоторых пресноводных гидробионтов в норме и при поражении. Непораженные дафнии, если их потревожить, слегка покачав сосуд, легко поднимаются вертикально вверх и довольно долго могут держаться в толще воды, почти не двигаясь с места. Пораженные дафнии обычно не поднимаются ото дна вверх больше чем на 1-2 см и не могут удерживаться в толще воды. В отличие от нормальных рачков, которые «садятся» на дно, пораженные «ложатся» на бок, часто кружатся на месте. При воздействии фосфорор-ганических пестицидов пораженные дафнии непрерывно вращаются через голову и держатся у дна и стенок сосуда.[ ...]

Важным является исследование накопления радионуклидов гидробионтами в зависимости от концентрации в воде соответствующих макроэлементов или, иначе говоря, неизотопных носителей. Установлено, что коэффициенты накопления 90Sr находятся в обратной зависимости от содержания в воде его химических аналогов- кальция и магния, а коэффициенты накопления mCs находятся в такой же зависимости от содержания в водной среде калия (Марей и др., 1958; Williams, 1960; Pickering, Lucas, 1961; Иванов и др., 1965;Ти-мофеева, 1965; Тимофеева, Куликов, 1968; Пискунов и др., 1971; Марчюленене, Нянишкене,1973).[ ...]

Важность последнего обстоятельства состоит в том, что для гидробионтов интервал толерантности по pH столь узок, что даже незначительные отклонения от оптимума приводят организм к гибели. Это связано с нарушением очень тонкой системы ферментной регуляции в организме.[ ...]

Выбор методики для определения токсичности водной среды на гидробионтах, участвующих в процессах самоочищения и фотосинтеза, затрудняется тем, что в отношении чувствительности разных гидробионтов к токсическим веществам нет простой зависимости.[ ...]

Большое значение для характеристики качества среды обитания гидробионтов и состояния планктонных животных имеет анализ трофической структуры. Этот анализ проводится на основе подсчета величин отношения численности С1ас1осега к Сус1оро1с1а, что отражает примерное соотношение мирных и хищных форм зоопланктеров. Известно, что эта величина резко возрастает при эвтрофировании (Андроникова, 1996; Крылов, 1996а). Доминирование Сус1оро1 [ ...]

Биотестирование водоемов основано на том, что отдельные группы гидробионтов могут жить при определенной степени загрязнения водоема органическими веществами. Способность гидробионтов выживать в загрязненной органикой среде называется сапробностъю.[ ...]

На основании приведенных выше данных о концентрации радионуклидов в гидробионтах реки Течи (табл. 69) и воде (табл. 53,54 и 55) рассчитаны средние значения коэффициентов накопления (КН). Как видно из таблицы 80, коэффициенты накопления 90Sr для роголистника темнозеленого, рассчитанные на сухой вес варьируют от 100 до 906, составляя в среднем 459; аналогичные значения для 137Cs для этого же вида изменяются от 912 до 14838, равняясь в среднем 5005; коэффициенты накопления 239,240Ри для роголистника варьируют от 1954 до 28077, составляя в среднем 10954. Значения коэффициентов накопления для элодеи составляют в среднем: для 90Sr -1371 и 137Cs - 3435. Для прибрежноводных растений аккумулирование 90Sr и 137Cs выражено в несколько меньшей степени. Так, коэффициенты накопления 90Sr составляют: у осоки - 319, у сусака - 568; аналогичные величины для 137Cs равняются: у осоки -1252, у сусака - 2258.[ ...]

Тепловое загрязнение водоемов ведет к усилению токсического действия на гидробионтов различных поллютантов - таких как нефть и нефтепродукты, детергенты, пестициды, тяжелые металлы и др.[ ...]

Эта система имеет решающее значение в формировании условий жизнедеятельности гидробионтов (живых организмов, обитающих в водной среде).[ ...]

Экологическая пластичность является важным регулятором расселения организмов. Доказано, что гидробионты с высокой экологической пластичностью распространены широко, например, элодея. Противоположный же пример - рачок артемия (Artemia solina), живущий в небольших водоемах с очень соленой водой, является типичным стеногалинным представителем с узкой экологической пластичностью. По отношению же к другим факторам он обладает значительной пластичностью и в соленых водоемах встречается довольно часто.[ ...]

Распространение и жизнедеятельность организмов в воде зависят от кислотности среды. Каждый вид гидробионта адаптирован (приспособлен) к определенному значению pH: одни предпочитают кислую среду, другие - щелочную, третьи - нейтральную. Промышленные, сельскохозяйственные, бытовые стоки существенно изменяют этот показатель, что приводит к смене одних групп водных обитателей другими, а в сооружениях биологической очистки сточных вод оказывает решающее влияние на активность входящих в состав ила водорослей, бактерий, коловраток и др.[ ...]

До настоящего времени не было никаких сведений, касающихся содержания тяжелых и других металлов в гидробионтах оз. Б. Миассово и других озер Ильменского заповедника. Цель наших исследований состояла в установлении биоаккумуляции и биоконцентрации тяжелых металлов в органах и тканях высших водных растений и рыб, выявлении биоиндикаторов. Предпринята попытка проанализировать количественные взаимоотношения металлов, накапливаемых водными растениями и рыбами. Контроль содержания тяжелых металлов в гидробионтах представляется существенным и перспективным.[ ...]

Экологическое значение температуры в первую очередь проявляется через воздействие на распределение гидробионтов в водоемах и на скорость протекания различных жизненных процессов, количественно связанных с температурой. Амплитуда колебаний температуры, при которой могут жить рыбы, для разных видов различна. Виды, существующие в широком температурном диапазоне, называются эвритермными, в узком - стенотермны-ми. Рыбы средних широт приспособлены к широким колебаниям температуры.[ ...]

Такие легкоусвояемые органические вещества, как сахара, аминокислоты, витамины и другие, имеют важное значение в жизни гидробионтов и в первую очередь в их питании. К взвешенным органическим веществам относится детрит, который состоит из минеральных и органических частиц, объединяющихся в сложные комплексы. Детритом питаются многие коловратки, ракообразные, моллюски, иглокожие и многие рыбы.[ ...]

Экологические последствия прогрессирующего закисления водоемов заключаются в постепенном уменьшении численности популяций гидробионтов вплоть до полного исчезновения многих видов, часто сопровождаемом распространением немногочисленных устойчивых по отношению к повышенному содержанию кислот организмов - некоторых насекомых (например, стрекоз), нитчатых водорослей и водных мхов. Как правило, нарушения наблюдаются на всех уровнях экосистемы - от микробных сообществ и первичных продуцентов до организмов конечных звеньев трофической цепочки (хищные рыбы и питающиеся рыбой птицы).[ ...]

Важнейшими условиями, определяющими жизнь водных организмов, являются температура, свет, газовый режим, содержание биогенных элементов. Связь гидробионтов с элементами внешней среды взаимообусловлена, и изменение одной системы связей неминуемо вызывает изменение другой. Поэтому, рассматривая влияние отдельных компонентов гидрохимического режима на жизнедеятельность гидробионтов, необходимо иметь в виду условность такого вычленения, ибо в природе все отношения организма и среды взаимосвязаны.[ ...]

Все растительное и животное население водоема принимает участие в превращении веществ. Процесс превращения веществ в водоеме основан на создании гидробионтами так называемых пищевых рядов или пищевых цепей. Каждый ряд начинается с организмов - продуцентов. К продуцентам, в первую очередь, относятся водоросли и автотрофные бактерии- Те и другие осуществляют в водоеме первичный синтез органического вещества и служат пищей для других организмов, неспособных к автотрофному питанию. Так, водорослями обычно питаются разнообразные веслоногие рачки, моллюски, губки, а бактерии пожираются многочисленными одноклеточными животными (Protozoa); эти животные называются протестами или простейшими. Далее протисты также служат пищей рачкам, губкам, моллюскам, которые в свою очередь являются кормом для рыб. Отмирание организмов и выделение ими продуктов обмена веществ образует мертвое органическое вещество - детрит. Детрит минерализуется микроорганизмами до минеральных продуктов, а кроме того, служит пищей червям, моллюскам, личинкам насекомых и малькам некоторых рыб (Родина, 1958).[ ...]

Особенности формирования и развития зоопланктона Рыбинского водохранилища, сезонная и суточная динамика численности и биомассы большинства массовых видов гидробионтов описаны рядом автором (Мануйлова, 1956; Монаков, 1976; Ривьер и др., 1982 и др.).[ ...]

Экспресс-оценка токсичности воды выполнялась с помощью люми-несцирующих тест-систем Microtox, широко применяемых на Западе. Тестирование влияния на низшее звено гидробионтов проводилось нами с использованием отечественного аналога всемирно известных тест-систем лиофизированного генно-инженерного биосенсора «Эколюм-05».[ ...]

В последнее время появляется большое количество работ, посвященных анализу фитопланктона равнинных рек, в том числе и малых. Авторы отмечают, что состав фитопланктона малых рек определяется типом окружающего ландшафта, зарегулированием речного стока, химическим загрязнением (в том числе биогенными элементами), оптимальным соотношением внешних нарушений и ресурсной обеспеченности продукционного процесса при отсутствии “суровых” факторов среды.[ ...]

Важнейшее из них - взаимодействие атмосферных осадков, попадающих в водоисточник, с загрязненным воздухом и почвенным покровом; биологические процессы в водоеме с участием гидробионтов и деятельность человека (регулирование речного стока, ирригация, судоходство, сброс сточных вод й т. д.).[ ...]

Способность организмов развиваться в среде с тем или иным содержанием органических веществ, при той или иной степени загрязненности называется сапробно-стью данного организма. Поскольку гидробионты являются весьма чувствительными индикаторами на изменение экологической обстановки, оказалось возможным оценивать степень загрязненности водоема по присутствию в нем организмов известной сапробности.[ ...]

Вместе с тем установлено, что даже после полной биохимической очистки (до БПК11(Ш1 - 10-15 мг/л 02) сточных вод различных предприятий промышленности, очищенная вода может оставаться токсичной для гидробионтов (рыб, их икры, мальков, кормовых беспозвоночных, водорослей и других организмов).[ ...]

При эксплуатации атомных электростанций в водоемы-охладители поступают подогретые воды, прошедшие систему охлаждения АЭС. В целом, проблема влияния термальных вод на поведение радионуклидов в гидробионтах изучена недостаточно. Известны лишь отдельные работы, выполненные преимущественно в условиях лабораторного эксперимента, которые указывают на увеличение накопления радионуклидов гидробионтами при повышении температуры воды (Гусев и др., 1971; Ляпинидр., 1971; Грачев, 1977; Катков и др., 1978; Куликов и др., 1978). Нашей задачей было выяснить степень влияния температуры водной среды на накопление б0Со, 908г и 137Сз типичными представителями высших водных растений - элодеей, роголистником темнозеленым, ряской малой, рдестом гребенчатым, рдестом прон-зеннолистным, а также нитчатой водорослью кладофорой. Исследование проводили как в природных, так и в экспериментальных условиях.[ ...]

Типы загрязнения подразделяются на два вида: активное -недоочищенные сточные воды предприятий или населенных пунктов и пассивное - стоки с сельхозугодий (Андрушайтис и др., 1981, 1984). В обоих случаях население гидробионтов малых рек из-за их быстрой реакции на внешнее воздействие является одним из лучших индикаторов.[ ...]

В результате проведенных опытов получают ответ на вопросы: 1) являются ли испытуемое вещество или сточная.вода резко токсичными; 2) содержит ли вода специфические токсические вещества или она неприемлема для гидробионтов только потому, что в ней нет растворенного кислорода (об этом говорят опыты с продуванием воздуха); 3) при каком разбавлении (концентрации) вещества (сточной жидкости) чистой водой исчезает острая токсичность; 4) как меняется степень токсичности воды с изменением температуры (опыты при трех температурах). Полнота ответа возрастает с увеличением длительности опыта и разнообразием взятых тест-объектов.[ ...]

Одним из методов интегральной оценки качества воды, имеющей контакт с устройством очистки, для выявления возможного негативного влияния конструкционных материалов на качество питьевой воды является биотестирование с помощью гидробионтов различных трофических уровней.[ ...]

Наиболее универсальным показателем токсического действия химического вещества на тест-объекты является, бесспорно, их смерть (летальный эффект). Любой организм, помещенный в среду, содержащую ядовитые для него вещества, гибнет. Поэтому метод установления смертности гидробионтов издавна считают наиболее понятным и доказательным индикатором токсичности водной среды.[ ...]

Однако есть другая забота. Надо добиваться проведения таких профилактических мероприятий (включая и предотвращение поступления токсических веществ в водоем), которые бы обеспечивали нормальное течение биологических процессов в водоеме. Наиболее существенным требованием в данное время является искоренение и недопущение токсичности водной среды для гидробионтов, полезных человеку. Следовательно, методика должна дать сведения, у какой группы гидробионтов и при каких концентрациях токсиканта или разведениях сточной воды будут наблюдаться нарушения, к чему это приводит и при какой концентрации не будет нарушений, приводящих к уменьшению численности полезных человеку гидробионтов. В данном случае польза, в широком понимании, для человека должна быть положена в основу критерия чистоты воды. Только с этих позиций можно удовлетворительно решить стоящую задачу. Постановка же вопроса о чистой воде вообще, без относительной пользы для человека, не имеет практического решения в отношении природных поверхностных вод. Как бы поверхностная вода ни была загрязнена, в ней всегда какие-нибудь организмы живут и достигают большой численности, т. е. такая среда для них благоприятна. С биологической точки зрения все организмы имеют одинаковое «право» на жизнь. В загрязненных водах может быть даже большая биопродукция органического вещества. Однако набор организмов-такой, что они приносят малую пользу или да е вред человеку, поэтому такие воды мы можем считать загрязненными. Некоторые гидробионты, живущие в таких во дах, разрушают, осаждают токсические вещества в донные отложения или переводят в менее токсические соединения и тем самым они приносят некоторую пользу, осуществляя процессы самоочищения. Но их большая численность и присутствие патогенных организмов делают воду непригодной для хозяйственных или эстетических целей использования.[ ...]

Некоторые патогенные микроорганизмы сохраняют способность к размножению даже в воде водоемов, образуют споры. Выделяют следующие группы факторов, обусловливающих сроки выживания патогенных микроорганизмов в воде: 1) биологические особенности возбудителей заболевания; 2) количество попадающих в водоем микроорганизмов; 3) одновременное попадание в водоем биологического субстрата их естественного обитания; 4) особенности водоема; 5) температурный фактор; 6) комплекс гидрометеорологических факторов; 7) сопутствующая микрофлора и гидробионты (Л. В. Григорьева).[ ...]

Для этого водоема характерно наличие трех максимумов развития фитопланктона: весной доминировали диатомовые и сине-зеленые водоросли, летом и осенью - диатомовые и криптомонады. По уровню развития водорослей озеро относилось к эвтрофному типу (Ми-неева, 1994; Корнева, 1994). В нем складывались относительно благоприятные условия для развития зооперифитона - наличие субстратов в виде макрофитов, затопленных пней и коряг, обилие пищи в виде бактерий и водорослей, удовлетворительный гидрохимический режим. Стрессовую ситуацию для гидробионтов могло создавать эпизодическое снижение pH воды до 5,5 во время половодья, но в этот период беспозвоночные находятся еще в малоактивном состоянии.[ ...]

Каждая из предложенных методик, безусловно, решает какую-то задачу, но поскольку любой организм реагирует на действие токсического вещества множеством разнообразных изменений в самых различных процессах, то, по образному выражению Грина и Гольденбергера (1966), такое действие химических веществ, попавших в организм, можно сравнить с действием слона, попавшего в ¡посудную лавку. Следовательно, таких методик по характеру действия веществ на организм можно получить большое количество, хотя, безусловно, не все они будут равноценны и равнозначны. В связи с многообразием реагирования гидробионтов на изменения химического состава среды их обитания возникают вопросы о выборе определенных методик (основных), которые правильно бы отражали все стороны действия,на организм токсических веществ и давали бы оценку их токсичности. Поэтому возникает необходимость искать условия стандартизации методик, применяемых в водной токсикологии, с тем чтобы в установлении закономерностей действия токсических веществ на гидробионтов и в выявлении предельных концентраций вредных веществ можно было бы исходить из единых позиций.[ ...]

В первые же годы работы Костромской ГРЭС было установлено, что процессы обрастания в зоне подогрева проходили более интенсивно, чем за ее пределами, но состав доминирующих форм оказался сходным (Скаль-ская, 1974; 1976 а, б; 1978). При наиболее высокой температуре 26,4-29,1°С отмечалась повышенная смертность личинок хирономид и молоди дрейссе-ны, однако выжившие моллюски росли быстрее, чем за пределами этой зоны. Влияние подогрева отражалось также и на фенологических сдвигах биологических циклов беспозвоночных. Последнее обстоятельство характерно практически для всех водоемов-охладителей и касалось почти всех групп гидробионтов (Мордухай-Болтовской, 1975; Ляхнович и др., 1979; Янкявичюс и др., 1979; Hillman et al., 1980; Parkin et al., 1981; Dinet et al., 1982; Raddum, 1985; Кузьмичева и др., 1985; Крючков и др., 1985; Каратаев и др., 1990).[ ...]

Размножается хромулина путем продольного деления, чаще всего в пальмеллевидном состоянии. В конце вегетации могут возникать кремнистые, тонкостенные цисты с гладкой поверхностью и длинной, слегка расширенной у отверстия, шейкой (рис. 68, 2). После периода покоя циста прорастает, из нее выходят 1 - 2-4 зооспоры (рис. 68, 3). Выйдя из оболочки цисты, зооспора становится самостоятельной вегетативной клеткой. В течение лета деление и образование зооспор может повторяться многократно. А так как хромулина является прекрасным кормом для ракообразных, то увеличение ее численности способствует улучшению кормовой базы для многих гидробионтов водоема.[ ...]

Основным источником загрязнения водных объектов являются рудничные воды и воды хвостохранилища, в которых основные физические показатели (прозрачность, цветность, мутность, содержание ионов pH), а также главных ионов(№. Для перечисленных компонентов воды в разные годы были зарегистрированы разные показатели, их содержание всегда было выше фонового в 1,5 (pH) -10 (К) раз (Zirtanen, Магкопеп, 2000). Основным компонентом, оказывающий негативное воздействие на гидробионтов является калий, концентрация которого более чем в 100 раз превышает фон.[ ...]

В соответствии с дискуссиями и решениями симпозиумов основу методического сборника положен биологический аапект. Биологический критерий токсичности явился главным критерием основной методики водной токсикологии. Другие критерии, основанные на констатации изменений биохимических, биофизических, физико-химических и физиологических показателей, рас-сматриваются как дополнительные, соподчиненные главному - биологическому критерию. Они важны для понимания механизма действия токсиканта на организм, т. е. вскрывают глубинные процессы в организме, но их биологическая значимость может быть правильно оценена только в свете более общих закономерностей, а именно биологического благополучия особи и вида. В сборнике представлено много частных методик для регистрации разных показателей, которые будут способствовать углубленному исследованию проблем по водной токсикологии. Приводятся методики ведения культур гидробионтов для токсикологических работ. В заключение излагаются методики исследования; токсичности на пресных и морских водоемах.[ ...]

В литературе имеется описание многих испытаний, которые претендуют на методики определения токсичности водной среды, причем некоторые авторы предлагают делать заключение о токсичности по одному какому-либо показателю, т. е. по одной реакции организма на воздействие внешней среды, исходя из понимания или важности показателя для жизни особи (например, холинэстераза, условный рефлекс, эритроциты и лейкоциты крови, потребление кислорода и мн. др.), или его выской чувствительности (т. е. изменяемости). По мере разработки методик в биохимии, биофизике и физиологии они все в большем количестве применяются в токсикологии. Авторы предлагаемых методик уверяют читателя, что рекомендуемые ими методики очень точны, чувствительны и для определения токсичности требуют мало времени. Сами авторы подобных предложений не утруждают себя размышлениями о сфере и границах применения данной методики. Для правильной оценки токсичности водной среды для гидробионтов необходимо прежде всего наметить те принципы, которые должны быть положены в основу методики, с помощью которой затем будет решаться стоящая задача.

Гидробионты – организмы, постоянно обитающие в водной среде. К гидробионтам также относятся организмы, живущие в воде часть жизненного цикла.

Разнообразие населения гидросферы нашей планеты (около 250 тыс. видов) заметно беднее населения суши – из-за огромного числа видов насекомых в наземных сообществах. Однако, если сравнение вести по крупным таксонам, получается иная картина. В гидросфере представлены все типы и, по подсчетам академика Л.А. Зенкевича, 90 % классов животных, подавляющее большинство (85 %) которых обитает только в воде.

Напомним, что к наиболее крупным экологическим зонам водоемов относятся их толща, или пелагиаль (pelagos – открытое море), дно с прилегающим к нему слоем воды, или бенталь (bentos – глубина), и поверхностный слой воды, граничащий с атмосферой, или нейсталь (nein – плавать).

Среди населения пелагиали различают представителей планктона, среди которых выделяется фито- и зоопланктон (planktos – парящий) и нектона (nektos – плавающий). К первым относятся формы, либо вовсе не способные к активным движениям, либо не способные противостоять потокам воды, переносящим их с места на место – водоросли, простейшие, рачки, коловратки и другие мелкие организмы. Своеобразной жизненной формой является криопланктон – население талой воды, образующейся под лучами солнца в трещинах льда и пустотах снега. Днем организмы криопланктона ведут активный образ жизни, а ночью вмерзают в лед. Некоторые из них при массовом развитии могут даже окрашивать снег или лед. Гидробионты, приспособленные к донному образу жизни, называются бентосом, который делится на фито- и зообентос.

К нектонным формам принадлежат крупные животные, двигательная активность которых достаточна для преодоления водных течений (рыбы, кальмары, млекопитающие).

Приспособления планктонных и нектонных организмов к пелагическому образу жизни сводятся прежде всего к обеспечению плавучести, т.е. предотвращению или замедлению погружения под действием силы тяжести.

Это может быть достигнуто за счет повышения трения о воду. Чем меньше тело, тем больше его удельная поверхность и больше трение. Поэтому наиболее характерная черта планктонных организмов – малые и микроскопические размеры.

Увеличение удельной поверхности может достигаться также при уплощении тела, образовании всевозможных выростов, шипов и других придатков. С ухудшением условий плавучести (повышение температуры, понижение солености) часто наблюдается и изменение формы тела планктонных организмов. Например, в Индийском океане жгутиковые Ceratium recticulatum и C.palmatum имеют гораздо более длинные разветвленные придатки, чем в расположенной восточнее Атлантики, где вода холоднее. В какой-то мере с сезонными колебаниями температуры, сопровождающимися изменением плотности и вязкости воды, связан и цикломорфоз рачков, коловраток и других организмов – при потеплении образуются поколения с менее компактной формой тела, а с похолоданием наблюдается обратная картина 1 .

Второй путь увеличения плавучести – уменьшение остаточной массы, т.е. разницы между массой организма и вытесненной им воды. Это может достигаться за счет повышения содержания воды в теле – ее количество у некоторых сальп, гребневиков, медуз достигает 99 %, благодаря чему их способность к пассивному передвижению становится практически безграничной.

У плавающих организмов происходит редукция тяжелых скелетных образований, например, у пелагических моллюсков (головоногих, крылоногих, киленогих 2) – раковины. У пелагических корненожек раковинка более пористая, чем у бентосных. Планктонные диатомовые водоросли отличаются от придонных более тонкими и слабее окремненными оболочками. У многих радиолярий кремниевые иглы становятся полыми. У многих плавающих черепах заметно редуцируются кости панциря.

Широко распространенный способ снижения плотности у гидробионтов – накопление жира. Богаты им радиолярии Spumellaria, ветвистоусые и веслоногие рачки. Жировые капли имеются в пелагической икре ряда рыб. Жир вместо тяжелого крахмала в качестве запасного питательного вещества накапливается у планктонных, диатомовых и зеленых водорослей. У некоторых, рыб, таких как гигантская акула (Cetorhinus maximus), луна-рыба (Mola mola), в теле так много жира, что они почти без всяких активных движений могут держаться у поверхности воды, где питаются планктоном. Часто накопление жира сопровождается и характерными изменениями в его составе. Например, у акул рода Centrophorus жировые отложения на 90 % представлены наиболее легким липидом – скваленом.

Эффективное средство повышения плавучести – газовые включения в цитоплазме или специальные воздушные полости. Газовые вакуоли есть у многих планктонных водорослей. У бурых водорослей рода Sargassum накопление газовых пузырей на талломах превратило их из донных в гипонейстонные (приповерхностные) формы. Газовый пузырек в своей цитоплазме имеют раковинные амебы, воздухоносные камеры есть в подошве плавающих вниз щупальцами медуз. Плавательный пузырь, наполненный газом, свойствен многим рыбам (но у глубоководных форм, в условиях больших давлений, плавательный пузырь часто заполняется липидами). Наибольшего развития воздухоносные полости достигают у ряда сифонофор, благодаря чему их тело 3 становится даже легче воды и сильно выступает из нее.

Другой ряд адаптаций пелагических организмов связан с характером их передвижения. Такой вид активного плавания осуществляется с помощью жгутиков, ресничек, изгибания тела, гребли конечностями и реактивным способом. Передвижение с помощью ресничек и жгутиков эффективно только при небольших размерах (0,05–0,2 мм) и потому наблюдается лишь у микроскопических организмов. Движение путем изгибания тела характерно для более крупных обитателей пелагиали. В одних случаях (пиявки, немертины) изгибания совершаются в вертикальной плоскости, в других – в горизонтальной (личинки насекомых, рыбы, змеи), в третьих – винтообразно (некоторые полихеты). Наибольшие скорости движения достигаются изгибанием заднего отдела тела в горизонтальной плоскости. Например, меч-рыба (Xiphias gladius) способна развивать скорость до 130 км/ч. Весьма эффективно плавание реактивным способом. Среди простейших оно свойственно, например, жгутиковому Medusochloris phiale и инфузории Craspedotella pileotus, тело которых имеет колоколообразную форму и при сокращении выбрасывает наполняющую его воду. Сокращая колокол, движутся медузы. Подобно колоколу медуз, работают щупальца с натянутой между ними перепонкой у голотурии Pelagothuria и головоногих моллюсков рода Cirrothauma. Особенно совершенно реактивное движение у ряда головоногих моллюсков, которых часто называют «живыми ракетами».

Для обеспечения быстроты движения у гидробионтов вырабатывается обтекаемая форма тела; высокой скорости движения способствуют выделение слизи, снижающее трение (рыбы, головоногие моллюски), и специфическое строение кожных покровов – сопротивление воды телу движущегося дельфина в несколько раз меньше, чем равновеликой модели такой же формы.

Тело плавающих животных, имеющих отрицательную плавучесть, как правило, более выпукло сверху, а у организмов с положительной плавучестью – снизу. В результате во время движения действует, дополнительная подъемная или соответственно заглубляющая сила, благодаря чему активно передвигающиеся животные почти не тратят энергии на поддержание своего положения в толще воды.

Активное передвижение в воде может также осуществляться за счет прыжков. К таким движениям способны многие коловратки, ракообразные, личинки насекомых, рыбы, млекопитающие. Во время прыжка скорость движения во много раз выше, чем при плавании. Например, коловратка Scaridium eudactylotum плавает со скоростью 0,25 мм/с, а совершая прыжок, достигает 6 мм/с. Рачки-эвфаузииды, обычно плавающие со скоростью не более 8 см/с, способны делать резкие прыжки в любом направлении. После быстрого броска планктонные организмы замирают, дезориентируя хищников.

Некоторые пелагические животные, разгоняясь в воде, выпрыгивают из нее, совершая планирующий полет в воздухе. Характерны частые прыжки из воды в воздух рачков «летающих копепод» Pontellidae – у черноморских форм такие прыжки могут достигать 15 см в высоту и 15–20 см в длину.

К полету способны многие головоногие моллюски и рыбы. Кальмар Stenoteuthis bartrami длиной 30–40 см, разогнавшись в воде, может пролетать над над морем более 50 м со скоростью около 50 км/ч. К такому полету он прибегает, спасаясь от хищников. Так же спасаются от них летучие рыбы (сем. Exocoetidae), обитающие в тропических и субтропических морях. Они разгоняются в воде до скорости 30 км/ч, резко увеличивают ее на поверхности при отрыве от воды – до 60–65 км/ч и пролетают 100–200 м, а иногда и до 400 м.

Наконец, третьей формой активного перемещения у водных организмов является скольжение. Среди пелагических организмов оно наблюдается у мелких форм, например у дитомовых водорослей, и обеспечивается контактом движущейся цитоплазмы с водой.

Трехмерность водной среды обитания позволяет выделять также способы перемещения организмов в вертикальной плоскости – всплытие и погружение. Активное движение такого рода за счет изменения плотности характерно для многих представителей фитопланктона и мелкого зоопланктона, реже оно встречается у крупных животных. Окружая себя микроскопическими пузырьками кислорода, выделяемого при фотосинтезе, водоросли всплывают, а сбросив с себя эти «поплавки», движутся вниз. Принципиально сходен с этим механизм вертикального перемещения водорослей за счет попеременного накапливания в клетках тяжелых или легких ионов, в результате чего происходит изменение плотности. Регулируя ее, водоросли удерживаются в горизонтах воды, благоприятных по освещенности и содержанию биогенных элементов. У мелких беспозвоночных изменение плотности и соответствующее перемещение по вертикали достигается образованием временных газовых камер, например вакуолизации цитоплазмы у многих простейших. Крупные организмы, имеющие постоянные газовые камеры, регулируют их объем и благодаря этому перемещаются вверх или вниз. Чрезвычайно распространено движение организмов вверх с помощью локомоторных органов, а вниз – под действием силы тяжести.

Помимо активного передвижения, в водных сообществах широко распространено пассивное перемещение организмов. Подвижность самой среды обитания (масс воды) позволяет гидробионтам широко использовать природные силы для расселения, смены биотопов, перемещения в поисках пищи, мест размножения и других целей, компенсируя таким путем недостаточность средств активного передвижения или просто экономя энергию. Естественно, что из обитателей пелагиали планктонные формы перемещаются за счет внешних сил в большем масштабе, чем нектонные.

В реках пассивно скатывающаяся молодь рыб использует течения для перемещения к устьям. Морские течения, обладающие большой протяженностью и высокой скоростью, способны перемещать растения и животных на тысячи километров. Например, личинки европейского угря (Anguilla anguilla), вышедшие из икры в центральной части Атлантического океана, с потоками течений Гольфстрим и Северо-Атлантического в течение 2,5–3 лет пассивно дрейфуют к берегам Европы, преодолевая расстояние в 7–8 тыс. км. Водами Гольфстрима тепловодные сифонофора Physophora hydrostatica и зеленая водоросль Halosphaera viridis заносятся до Лафотенских островов и Новой Земли. Личинки некоторых брюхоногих моллюсков и десятиногих раков с помощью течений могут пересекать океаны от берега к берегу.

Временно прикрепленные планктонные организмы могут перемещаться с кораблями, плавающими предметами, другими гидробионтами. Многие представители морского и пресноводного планктона могут вмерзать в лед и перемещаться вместе с ним. Интересно, что покоящиеся стадии планктонных организмов могут переноситься и воздушными течениями! Когда водоемы частично или полностью пересыхают, ветер, поднимая пыль с обсохшего грунта, переносит вместе с ней и их, обеспечивая расселение по другим водоемам.

Наряду с горизонтальными пассивными перемещениями у гидробионтов существуют и вертикальные, обусловленные выходом глубинных вод на поверхность, или погружением поверхностных вод в глубину. Наибольший размах вертикальных перемещений водных организмов токами воды наблюдается в умеренных и приполярных водах в зонах перемешивания водных масс.

Многим представителям планктона и нектона свойственны миграции – массовые перемещения, регулярно повторяющиеся во времени и пространстве. Такие перемещения могут совершаться и в горизонтальном, и в вертикальном направлениях – в те участки ареала, где в данное время условия наиболее благоприятны.

Массовые активные перемещения в горизонтальном направлении совершают, главным образом, представители нектона, особенно рыбы и млекопитающие. Миграции, направленные из открытого моря к его берегам и в реки, называются анадромными, а имеющие противоположное направление – катадромными. Горизонтальные миграции нектонных организмов могут достигать очень большой протяженности. Креветка Penaeus plebejus преодолевает расстояние до 1 тыс. км и более. Тихоокеанские лососи рода Oncorhynchus – нерка, чавыча, горбуша, кета и другие, идущие на нерест из океана в реки, проплывают 3–4 тыс. км. Путь в 7–8 тыс. км преодолевают взрослые угри, идущие на нерест из рек Европы в Саргассово море. Грандиозны миграции тунцов, некоторых китообразных. Покрывая огромные расстояния во время миграций, животные обнаруживают поразительные навигационные способности. Например, тихоокеанские лососи неизменно идут на нерест в реки, в которых появились на свет.

Планктонные организмы могут мигрировать и пассивным путем, используя, например, течения – как те же личинки угрей.

Многим водным организмам свойственны суточные вертикальные миграции. Размах их в морях обычно составляет 50–200 м и более, а в пресных водоемах с малопрозрачной водой может не превышать несколько десятков сантиметров. Особенно сложна картина суточных миграций у представителей зоопланктона, большинство которых в темное время суток концентрируется у поверхности, а днем – в более глубоких слоях. Своеобразны миграции глубоководного планктона, поднимающего на глубины 200–300 м ночью и опускающегося днем на многие сотни метров (иногда – наоборот). Экологическое значение таких миграций разнообразно и во многих случаях еще не ясно.

Помимо суточных, вертикальные миграции гидробионтов могут носить сезонный характер или быть связанными с изменением образа жизни в ходе индивидуального развития.

В бентали жизненные формы гидробионтов представлены бентосом – организмами, обитающими на поверхности грунта и в его толще (соответственно, эпи- и эндобентос) и перифитоном (peri – вокруг, phyton – растение) – совокупностью организмов, поселяющихся на различных предметах и телах других организмов.

К наиболее массовым представителям бентоса относятся бактерии, актиномицеты, водоросли, грибы, простейшие (особенно корненожки и инфузории), губки, кораллы, кольчатые черви, ракообразные, личинки насекомых, моллюски, иглокожие. В состав перифитона также входят бактерии, водоросли, грибы, простейшие, губки, мшанки, черви, усоногие ракообразные, двустворчатые моллюски и другие беспозвоночные. Перифитонные организмы селятся на днищах кораблей, корягах, бревнах и иных плавающих предметах, на растениях и животных. В ряде случаев четкую границу между бентосом и перифитоном провести невозможно, например, в случае обрастания скал и различных предметов на дне.

Приспособления гидробионтов к бентосному и перифитонному образу жизни прежде всего сводятся к развитию средств удержания на твердом субстрате, защите от засыпания оседающей взвесью осадков, к выработке наиболее эффективных способов передвижения. Очень характерны для организмов бентоса и перифитона приспособления к временному переходу к пелагическому образу жизни, что обеспечивает этим малоподвижным формам возможность расселения.

Удержание на твердом субстрате достигается различными путями. Прикрепление к субстрату наблюдается у многих растений, простейших, губок, кишечнополостных, червей, моллюсков, ракообразных и других гидробионтов. Прикрепление может быть временным или постоянным, а по своему механизму – пневматическим (присасывательным), в виде сплошного прирастания, или корневидным – с помощью нитей. Присасывательное прикрепление наблюдается, например, у моллюсков Ancylus, пиявок, актиний. Сплошное прирастание может быть известковым (кораллы), хитиновым или рогоподобным (моллюски, усоногие раки). Прикрепление с помощью корней и ризоидов характерно для высших растений и многих водорослей (например, ламинарии). Прикрепление нитями биссуса свойственно ряду двустворчатых моллюсков (мидия, дрейссена).

Другая форма удержания – заглубление в субстрат: частичное или полное закапывание в грунт или внедрение в твердые породы путем их высверливания и протачивания. Закапываться способны многие моллюски, иглокожие, черви, личинки насекомых и даже некоторые рыбы. Например, некоторые морские угри выкапывают на песчаном дне норку, куда прячутся при опасности. К временному закапыванию в грунт приспособились также разные крабы, креветки, головоногие моллюски, рыбы (например, камбала). Внедряются в твердые субстраты, разрушая их механически или химически (растворение кислотами), некоторые губки, моллюски, иглокожие, ракообразные.

В качестве защиты от засыпания слоем осадков у бентосных организмов разных систематических групп конвергентно вырабатывается приподнятие над грунтом за счет соответствующей формы тела и вытягивания вверх в процессе роста. Наиболее распространенная форма тела прикрепленных донных организмов – конусообразная, воронковидная, грибообразная, во всех случаях более тонкая снизу (губки, одиночные кораллы, моллюски). У морских лилий имеется длинный стебелек, с помощью которого они прикрепляются к грунту, а стеклянные губки рода Euplectella имеют вид вытянутой вверх трубки. Наряду с вытягиванием вверх, защита от засыпания взвесью у прикрепленных организмов достигается поселением на субстратах, возвышающихся над дном. Прирастают к скалам и камням, различным предметам и организмам усоногие рачки, моллюски дрейссены, мшанки. Растения спасает от засыпания их быстрое нарастание.

По степени подвижности среди бентосных и перифитонных организмов выделяют формы бродячие (крабы, осьминоги, морские звезды), слабо перемещающиеся (моллюски, морские ежи) и прикрепленные (губки, мшанки, кораллы). В целом в этой группе способность к активным движениям выражена слабее, чем у пелагических организмов. Однако малая подвижность бентосных и перифитонных видов во взрослом состоянии обычно компенсируется высокой мобильностью их молоди, ведущей пелагический образ жизни.

Миграции вниз по течению ручьев и рек совершают многие ракообразные и личинки насекомых. Для этого они поднимаются в толщу воды и, проплыв некоторое расстояние, оседают на новом месте.

Наиболее значительные горизонтальные миграции во взрослом состоянии совершают крупные ракообразные. На расстояние до 200 км от прибрежья в открытое море перемещается осенью камчатский краб Paralithodes camtschtica, – а весной с мест зимовки он возвращается в прибрежные воды. Массовые миграции лангустов Panularis argus происходят осенью с началом штормов со скоростью 1 км/ч и длятся в течение нескольких дней. Мигрируя, лангусты образуют цепочки из десятков особей, следующих строго друг за другом, касаясь своими антеннами впереди идущего.

Ряд бентосных организмов совершает и вертикальные перемещения в толще грунта, которые носят суточный и сезонный характер и могут быть связаны с защитой от хищников, поисками пищи, обеспечением кислородом.

В нейстали обитают представители нейстона (nein – плавать) – микроскопические или мелкие формы, населяющие приповерхностный слой воды, и плейстона (pleusis – плавать) – организмы крупных или средних размеров, часть тела которых погружена в воду, а часть выступает над ней.

Среди нейстонных организмов также выделяют тех, кто обитает на поверхности водяной пленки – эпинейстон. В пресных водоемах это клопы-водомерки Gerris и Hydrometra, жуки-вертячки Cyrinus, мухи Ephydra; а на поверхности океанов многочисленны клопы-водомерки Halobates.

Совокупность организмов, населяющих верхний слой воды толщиной 5 см, называют гипонейстоном. Условия жизни в этом поверхностном слое достаточно сильно отличаются от остальной массы воды. Здесь поглощается до половины всей солнечной радиации, проникающей в воду, большая часть ультрафиолетовых и инфракрасных лучей. Здесь резко выражен перепад температур воды и атмосферы, здесь вследствие испарения и выпадения осадков варьирует содержание соли. А вот концентрация кислорода из-за контакта с воздухом неизменно высокая.

Для приповерхностного слоя воды характерна также высокая концентрация органических веществ, что создает благоприятные условия для питания нейстонных организмов. С одной стороны, на поверхность воды попадают трупы различных животных, летающих над водой, а также содержащая органику пыль, приносимая с суши. С другой – из глубин к поверхности всплывают остатки отмерших гидробионтов (так называемый антидождь трупов). Существенную роль в повышении концентрации органики играют также газовые пузырьки и пена – возникая в результате волнения воды, фотосинтеза, гниения и других причин, пузырьки газа адсорбируют органические вещества и транспортируют их в приповерхностный горизонт.

В составе гипонейстона преобладают гетеротрофные организмы – бактерии, простейшие, ракообразные, моллюски, насекомые, икра и молодь рыб и других гидробионтов. Интересно, что некоторые из них в качестве опоры используют нижнюю поверхность пленки воды (в пресных водах – моллюски Limnaea, Physa, рачки Scapholeberis и др.; в море – моллюски Hydrobia, Glaucus, Aeolis, личинки высших раков и др.).

Для представителей плейстона характерна двойственность адаптаций, соответствующая тому, что часть их тела находится в воде, а часть – в воздухе. У плейстонных растений устьица, например, образуются только на верхней стороне листовой пластинки, которая изогнута и покрыта восковым налетом, что обеспечивает несмачиваемость и предупреждает заливание устьиц.

Многие плейстонные организмы для своего движения используют ветер. Например, сифонофора физалия (Physalia aretusa) имеет крупный, до 30 см, пневматофор, окрашенный в ярко-голубой или красный цвет. Газ, наполняющий пневматофор, вырабатывается специальными газовыми железами, находящимися внутри пузыря, и по своему составу близок к атмосферному, но отличается повышенным содержанием азота и углекислого газа. Верхняя часть пневматофора имеет вырост в виде гребня (парус), который расположен несколько по диагонали и имеет слегка выгнутую S-образную форму. Благодаря косому расположения паруса физалия ассиметрична, причем у особей, обитающих по разные стороны экватора, асимметрия зеркальная. В северном полушарии, где экваториальное течение отклоняется к северу, ветер сносит физалий к югу, а в южном, где течение отклоняется к югу, – к северу. В результате физалии, все время передвигаясь под действием ветра и течений, не выходят за пределы своего ареала.

Некоторые рыбы, например парусник (Istiophorus platypterus), луна-рыба (Mola mola), переходя временно к плейстонному образу жизни, выставляют над поверхностью воды сильно развитый спинной плавник и медленно дрейфуют, используя для передвижения силу воздушных течений.

Природным водоемам свойствен определенный химический состав. Преобладают карбонаты, сульфаты, хлориды. В пресных водоемах концентрация солей не более 0,5 г/, в морях – от 12 до 35 г/л (промилле – десятые доли процента). При солености более 40 промилле водоем называют гипергалинным или пересоленным.

1) В пресной воде (гипотоническая среда) хорошо выражены процессы осморегуляции. Гидробионты вынуждены постоянно удалять проникающую в них воду, они гомойосмотичны (инфузории каждые 2–3 минуты «прокачивают» через себя количество воды, равное ее весу). В соленой воде (изотоническая среда) концентрация солей в телах и тканях гидробионтов одинакова (изотонична) с концентрацией солей, растворенных в воде – они пойкилоосмотичны. Поэтому у обитателей соленых водоемов осморегуляторные функции не развиты, и они не смогли заселить пресные водоемы.

2) Водные растения способны поглощать воду и питательные вещества из воды – «бульона», всей поверхностью, поэтому у них сильно расчленены листья и слабо развиты проводящие ткани и корни. Корни служат в основном для прикрепления к подводному субстрату. У большинства растений пресных водоемов есть корни.

Типично морские и типично пресноводные виды – стеногалинные, не переносят значительных изменений в солености воды. Эвригалинных видов немного. Они обычны в солоноватых водах (пресноводный судак, щука, лещ, кефаль, приморские лососи).

В воде кислород важнейший экологический фактор. Источник его – атмосфера и фотосинтезирующие растения. При перемешивании воды, особенно в проточных водоемах и при уменьшении температуры содержание кислорода возрастает. Некоторые рыбы очень чувствительны к дефициту кислорода (форель, гольян, хариус) и потому предпочитают холодные горные реки и ручьи. Другие рыбы (карась, сазан, плотва) неприхотливы к содержанию кислорода и могут жить на дне глубоких водоемов. Многие водяные насекомые, личинки комаров, легочные моллюски тоже толерантны к содержанию кислорода в воде, потому что они время от времени поднимаются к поверхности и заглатывают свежий воздух.

Углекислого газа в воде достаточно – почти в 700 раз больше, чем в воздухе. Он используется в фотосинтезе растений и идет на формирование известковых скелетных образований животных (раковины моллюсков, покровы ракообразных, каркасы радиолярий и др.).

В пресноводных водоемах кислотность воды, или концентрация водородных ионов, варьирует гораздо сильнее, чем в морских – от pH=3,7–4,7 (кислые) до pH=7,8 (щелочные). Кислотностью воды определяется во многом видовой состав растений гидробионтов. В кислых водах болот растут сфагновые мхи и живут в обилии раковинные корненожки, но нет моллюсков-беззубок (Unio), редко встречаются другие моллюски. В щелочной среде развиваются многие виды рдестов, элодея. Большинство пресноводных рыб живут в диапазоне pH от 5 до 9 и массово гибнут за пределами этих значений.

Кислотность морской воды убывает с глубиной.

Об экологической пластичности гидробионтов. Пресноводные растения и животные экологически более пластичны (эвритермны, эвригаленны), чем морские, обитатели прибрежных зон более пластичны (эвритермны), чем глубоководные. Есть виды, обладающие узкой экологической пластичностью по отношению к одному фактору (лотос – стенотермный вид, рачок артемия (Artimia solina) – стеногаленный) и широкой – по отношению к другим. Более пластичны организмы в отношении тех факторов, которые более изменчивы. И именно они распространены более широко (элодея, корненожки Cyphoderia ampulla). Зависит пластичность и от возраста и фазы развития.

Предыдущая

Наибольшим разнообразием жизни отличаются теплые моря и океаны (40000 видов животных) в области экватора и тропиках, к северу и югу происходит обеднение флоры и фауны морей в сотни раз. Что касается распределения организмов непосредственно в море, то основная масса их сосредоточена в поверхностных слоях (эпипелагиаль) и в сублиторальной зоне. В зависимости от способа передвижения и пребывания в определенных слоях, морские обитатели подразделяются на три экологические группы: нектон, планктон и бентос.

Нектон (nektos – плавающий) - активно передвигающиеся крупные животные, способные преодолевать большие расстояния и сильные течения: рыбы, кальмары, ластоногие, киты. В пресных водоемах к нектону относятся и земноводные и множество насекомых.

(planktos – блуждающий, парящий) – совокупность растений (фитопланктон: диатомовые, зеленые и сине-зеленые (только пресные водоемы) водоросли, растительные жгутиконосцы, перидинеи и др.) и мелких животных организмов (зоопланктон: мелкие ракообразные, из более крупных – крылоногие моллюски, медузы, гребневики, некоторые черви), обитающих на разной глубине, но не способных к активным передвижениям и к противостоянию течениям. В состав планктона входят и личинки животных, образуя особую группу – нейстон. Это пассивно плавающее «временное» население самого верхнего слоя воды, представленное разными животными (десятиногие, усоногие и веслоногие ракообразные, иглокожие, полихеты, рыбы, моллюски и др.) в личиночной стадии. Личинки, взрослея, переходят в нижние слои пелагели. Выше нейстона располагается плейстон – это организмы, у которых верхняя часть тела растет над водой, а нижняя – в воде (ряска – Lemma, сифонофоры и др.). Планктон играет важную роль в трофических связях биосферы, т. к. является пищей для многих водных обитателей, в том числе основным кормом для усатых китов (Myatcoceti).

Бентос (benthos – глубина) – гидробионты дна. Представлен в основном прикрепленными или медленно передвигающимися животными (зообентос: фораминефоры, рыбы, губки, кишечнополостные, черви, плеченогие моллюски, асцидии, и др.), более многочисленными на мелководье. На мелководье в бентос входят и растения (фитобентос: диатомовые, зеленые, бурые, красные водоросли, бактерии). На глубине, где нет света, фитобентос отсутствует. У побережий встречаются цветковые растения зостера, рупия. Наиболее богаты фитобентосом каменистые участки дна. В озерах зообентос менее обилен и разнообразен, чем в море. Его образуют простейшие (инфузории, дафнии), пиявки, моллюски, личинки насекомых и др. Фитобентос озер образован свободно плавающими диатомеями, зелеными и сине-зелеными водорослями; бурые и красные водоросли отсутствуют.

Укореняющиеся прибрежные растения в озерах образуют четко выраженные пояса, видовой состав и облик которых согласуются с условиями среды в пограничной зоне «суша-вода». В воде у самого берега растут гидрофиты – полупогруженные в воду растения (стрелолист, белокрыльник, камыши, рогоз, осоки, трищетинник, тростник). Они сменяются гидатофитами – растениями, погруженными в воду, но с плавающими листьями (лотос, ряски, кубышки, чилим, такла) и – далее – полностью погруженными (рдесты, элодея, хара). К гидатофитам относятся и плавающие на поверхности растения (ряска).

Высокая плотность водной среды определяет особый состав и характер изменения жизнеобеспечивающих факторов. Одни из них те же, что и на суше – тепло, свет, другие специфические: давление воды (с глубиной увеличивается на 1 атм. на каждые 10 м), содержание кислорода, состав солей, кислотность. Благодаря высокой плотности среды, значения тепла и света с градиентом высоты изменяются гораздо быстрее, чем на суше. Тепловой режим. Для водной среды характерен меньший приход тепла, т. к. значительная часть его отражается, и не менее значительная часть расходуется на испарение. Согласуясь с динамикой наземных температур, температура воды обладает меньшими колебаниями суточных и сезонных температур. Более того, водоемы существенно выравнивают ход температур в атмосфере прибрежных районов. При отсутствии ледового панциря моря в холодное время года оказывают отепляющее действие на прилегающие территории суши, летом – охлаждающее и увлажняющее.

Диапазон значений температуры воды в Мировом океане составляет 38° (от -2 до +36°С), в пресных водоемах – 26° (от -0, 9 до +25°С). С глубиной температура воды резко падает. До 50 м наблюдаются суточные колебания температуры, до 400 – сезонные, глубже она становится постоянной, опускаясь до +1-3°С (в Заполярье близка к 0°С). Поскольку температурный режим в водоемах сравнительно стабилен, их обитателям свойственна стенотермность. Незначительные колебания температуры в ту или иную сторону сопровождается существенными изменениями в водных экосистемах. Примеры: «биологический взрыв» в дельте Волги из-за понижения уровня Каспийского моря – разрастание зарослей лотоса (Nelumba kaspium), в южном Приморье – зарастание белокрыльником стариц рек (Комаровка, Илистая и др.) по берегам которых вырублена и сожжена древесная растительность.

В связи с разной степенью прогревания верхних и нижних слоев в течение года, приливами и отливами, течениями, штормами происходит постоянное перемешивание водных слоев. Роль перемешивания воды для водных обитателей (гидробионтов) исключительно велика, т. к. при этом выравнивается распределение кислорода и питательных веществ внутри водоемов, обеспечивая обменные процессы между организмами и средой.

В стоячих водоемах (озерах) умеренных широт весной и осенью имеет место вертикальное перемешивание, и в эти сезоны температура во всем водоеме становится однородной, т. е. наступает гомотермия. Летом и зимой в результате резкого усиления прогревания или охлаждения верхних слоев перемешивание воды прекращается. Это явление называется температурной дихотомией, а период временного застоя – стагнацией (летней или зимней). Летом более легкие теплые слои остаются на поверхности, располагаясь над тяжелыми холодными. Зимой, наоборот, в придонном слое более теплая вода, так как непосредственно подо льдом температура поверхностных вод меньше +4°С и они в силу физико-химических свойств воды становятся более легкими, чем вода с температурой выше +4°С.

В периоды стагнаций четко выделяются три слоя: верхний (эпилимнион) с наиболее резкими сезонными колебаниями температуры воды, средний (металимнион или термоклин), в котором происходит резкий скачок температур, и придонный (гиполимнион), в котором температура в течение года изменяется слабо. В периоды стагнаций в толще воды образуется дефицит кислорода – летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко происходят заморы рыбы.

Световой режим

Интенсивность света в воде сильно ослаблена из-за его отражения поверхностью и поглощения самой водой. Это сильно сказывается на развитии фотосинтезирующих растений. Чем меньше прозрачность воды, тем сильнее поглощается свет. Прозрачность воды лимитируется минеральными взвесями, планктоном. Уменьшается она при бурном развитии мелких организмов летом, а в умеренных и северных широтах – еще и зимой, после установления ледового покрова и укрытия его сверху снегом.

В океанах, где вода очень прозрачна, на глубину 140 м проникает 1% световой радиации, а в небольших озерах на глубине 2 м проникает всего лишь десятые доли процента. Лучи разных частей спектра поглощаются в воде неодинаково, вначале поглощаются красные лучи. С глубиной становится все темнее, и цвет воды становится вначале зеленым, затем голубым, синим и в конце – сине-фиолетовым, переходя в полный мрак. Соответственно меняют цвет и гидробионты, адаптирующиеся не только к составу света, но и к его недостатку – хроматическая адаптация. В светлых зонах, на мелководьях, преобладают зеленые водоросли (Chlorophyta), хлорофилл которых поглощают красные лучи, c глубиной они сменяются бурыми (Phaephyta) и далее красными (Rhodophyta). На больших глубинах фитобентос отсутствует.

К недостатку света растения приспособились развитием хроматофоров крупных размеров, обеспечивающих низкую точку компенсации фотосинтеза, а также увеличением площади ассимилирующих органов (индекса листовой поверхности). Для глубоководных водорослей типичны сильно рассеченные листья, пластинки листьев тонкие, просвечивающиеся. Для полупогруженных и плавающих растений характерна гетерофиллия – листья над водой такие же, как у наземных растений, имеют цельную пластинку, развит устьичный аппарат, а в воде листья очень тонкие, состоят из узких нитевидных долей.

Гетерофиллия: кубышки, кувшинки, стрелолист, чилим (водяной орех). Животные, как и растения, закономерно меняют свою окраску с глубиной. В верхних слоях они ярко окрашены в разные цвета, в сумеречной зоне (морской окунь, кораллы, ракообразные) окрашены в цвета с красным оттенком – удобнее скрываться от врагов. Глубоководные виды лишены пигментов. Характерными свойствами водной среды, отличными от суши, являются высокая плотность, подвижность, кислотность, способность растворения газов и солей. Для всех этих условий у гидробионтов исторически выработаны соответствующие приспособления-адаптации.

Каковы приспособления гидробионтов к высокой плотности воды ?

Воде свойственна высокая плотность (1 г/см 3 , что в 800 раз больше плотности воздуха) и вязкость.

1) У растений очень слабо развиты или вовсе отсутствуют механические ткани – им опора сама вода. Большинству свойственна плавучесть, за счет воздухоносных межклеточных полостей. Характерно активное вегетативное размножение, развитие гидрохории – вынос цветоносов над водой и распространение пыльцы, семян и спор поверхностными течениями.

2) У живущих в толще воды и активно плавающих животных тело имеет обтекаемую форму и смазано слизью, уменьшающей трение при передвижении. Развиты приспособления для повышения плавучести: скопления жира в тканях, плавательные пузыри у рыб, воздухоносные полости у сифонофор. У пассивно плавающих животных увеличивается удельная поверхность тела за счет выростов, шипов, придатков; тело уплощается, происходит редукция скелетных органов. Разные способы передвижения: изгибание тела, с помощью жгутиков, ресничек, реактивный способ передвижения (головомоллюски).

У придонных животных исчезает или слабо развит скелет, увеличиваются размеры тела, обычна редукция зрения, развитие осязательных органов.

Каковы приспособления гидробионтов к подвижности воды ?

Характерная черта водной среды – подвижность. Она обусловлена приливами и отливами, морскими течениями, штормами, разными уровнями высотных отметок русел рек.

1) В проточных водоемах растения прочно прикрепляются к неподвижным подводным предметам. Донная поверхность для них в первую очередь – субстрат. Это зеленые (Cladophora) и диатомовые (Diatomeae) водоросли, водяные мхи. Мхи даже образуют плотный покров на быстрых перекатах рек. В прибойно-отливной полосе морей и многие животные имеют приспособления для прикрепления ко дну (брюхоногие моллюски, усоногие раки), или же прячутся в расщелинах.

2) У рыб проточных вод тело в поперечнике круглое, а у рыб, обитающих у дна, как и у придонных беспозвоночных животных, тело плоское. У многих на брюшной стороне есть органы фиксации к подводным предметам.

Каковы приспособления гидробионтов к солености воды ?

Природным водоемам свойствен определенный химический состав. Преобладают карбонаты, сульфаты, хлориды. В пресных водоемах концентрация солей не более 0, 5 г/, в морях – от 12 до 35 г/л (промилле – десятые доли процента). При солености более 40 промилле водоем называют гипергалинным или пересоленным.

1) В пресной воде (гипотоническая среда) хорошо выражены процессы осморегуляции. Гидробионты вынуждены постоянно удалять проникающую в них воду, они гомойосмотичны (инфузории каждые 2-3 минуты «прокачивают» через себя количество воды, равное ее весу). В соленой воде (изотоническая среда) концентрация солей в телах и тканях гидробионтов одинакова (изотонична) с концентрацией солей, растворенных в воде – они пойкилоосмотичны. Поэтому у обитателей соленых водоемов осморегуляторные функции не развиты, и они не смогли заселить пресные водоемы.

2) Водные растения способны поглощать воду и питательные вещества из воды – «бульона», всей поверхностью, поэтому у них сильно расчленены листья и слабо развиты проводящие ткани и корни. Корни служат в основном для прикрепления к подводному субстрату. У большинства растений пресных водоемов есть корни. Типично морские и типично пресноводные виды – стеногалинные, не переносят значительных изменений в солености воды. Эвригалинных видов немного. Они обычны в солоноватых водах (пресноводный судак, щука, лещ, кефаль, приморские лососи).

Каково отношение гидробионтов к составу газов в воде ?

В воде кислород важнейший экологический фактор. Источник его – атмосфера и фотосинтезирующие растения. При перемешивании воды, особенно в проточных водоемах и при уменьшении температуры содержание кислорода возрастает. Некоторые рыбы очень чувствительны к дефициту кислорода (форель, гольян, хариус) и потому предпочитают холодные горные реки и ручьи. Другие рыбы (карась, сазан, плотва) неприхотливы к содержанию кислорода и могут жить на дне глубоких водоемов. Многие водяные насекомые, личинки комаров, легочные моллюски тоже толерантны к содержанию кислорода в воде, потому что они время от времени поднимаются к поверхности и заглатывают свежий воздух.

Углекислого газа в воде достаточно – почти в 700 раз больше, чем в воздухе. Он используется в фотосинтезе растений и идет на формирование известковых скелетных образований животных (раковины моллюсков, покровы ракообразных, каркасы радиолярий и др.).

Каково отношение гидробионтов к кислотности ?

В пресноводных водоемах кислотность воды, или концентрация водородных ионов, варьирует гораздо сильнее, чем в морских – от pH=3, 7-4, 7 (кислые) до pH=7, 8 (щелочные). Кислотностью воды определяется во многом видовой состав растений гидробионтов. В кислых водах болот растут сфагновые мхи и живут в обилии раковинные корненожки, но нет моллюсков-беззубок (Unio), редко встречаются другие моллюски. В щелочной среде развиваются многие виды рдестов, элодея. Большинство пресноводных рыб живут в диапазоне pH от 5 до 9 и массово гибнут за пределами этих значений. Кислотность морской воды убывает с глубиной.

Об экологической пластичности гидробионтов

Пресноводные растения и животные экологически более пластичны (эвритермны, эвригаленны), чем морские, обитатели прибрежных зон более пластичны (эвритермны), чем глубоководные. Есть виды, обладающие узкой экологической пластичностью по отношению к одному фактору (лотос – стенотермный вид, рачок артемия (Artimia solina) – стеногаленный) и широкой – по отношению к другим. Более пластичны организмы в отношении тех факторов, которые более изменчивы. И именно они распространены более широко (элодея, корненожки Cyphoderia ampulla). Зависит пластичность и от возраста и фазы развития.