В России насчитывается свыше 50 различных пород сосен, часть из которых культивируется особым образом. Не все виды пригодны для строительной сферы, наибольшей популярностью пользуются следующие сорта: сосна обыкновенная, гибкая, болотная, корейская и смолистая.

Качество бруска напрямую зависит от особенностей той местности, в которой вырастает дерево. В землях северной полосы естественным образом созданы наилучшие условия для произрастания деловых деревьев, которые по физико-механическим параметрам лучше всего подходят для применения в строительной сфере. Это ангарская сосна, карельская и архангельская.

Основная причина такой особенности северных земель заключается в климатических условиях: долгая морозная зима, быстротечное и сухое лето. Из-за этого создается интересный эффект: годовые кольца имеют между собой сверхмалое расстояние (меньше 2 мм). Расстояние у сосны, которая произрастает в природных условиях средней полосы, в несколько раз больше (достигает 10 мм).

Влажный теплый климат способствует увеличению межкольцевого расстояния, что приводит к рыхлости древесины в целом: прочность и теплоемкость у такого бруса будут ниже, чем у породы с небольшим расстоянием между годовыми кольцами, а процент усадки – выше. Склонность к растрескиванию у деревьев из средней полосы более высокая, чем у более северных пород.

Архангельская сосна усаживается на 3-4%, кировская и вологодская – на 4-6%, костромская – на 6-7%. Сосны из тверской, ярославской и смоленской областей могут потерять до 10% объема в процессе усадки. Следовательно, в процессе выбора сырья для постройки нужно принимать во внимание географические особенности.

От места произрастания зависит и цвет ядра. На сухой почве растет дерево с ядром красноватого оттенка и мелкослойной древесиной повышенной плотности. Такую сосну называют кондовой, ее ценность в области строительства очень велика. Деревья с желтоватым ядром и менее плотной древесиной с крупными слоями растут на почвах повышенной плодородности. Это мяндовые сосны, они уступают кондовым по целому ряду механических свойств и в целом имеют меньшую ценность.

Стройматериал, получаемый из сосен, обладает средней плотностью и высоким уровнем устойчивости к гниению и грибковым поражениям. Материал довольно прочен, легко поддается обработке. В строительной сфере имеет высокую ценность благодаря относительно небольшому количеству сучков и незначительному изменению диаметра по всей длине.

Слои годичных колец у сосновых пород четко заметны на срезах под любым углом, граница между древесиной ранней и поздней выражена ярко, сердцевинные лучи не наблюдаются. Наружный древесный слой широкий, его цвет варьируется от желтого до розоватого. Смоляные ходы сосредоточены в основном в поздней древесине.

Сосновый брус имеет несколько названий на строительном рынке, многие из них ассоциируют с самим деревом. Например, сосна обыкновенная, лесная, песчаная, белая. В Германии под названием «северная сосна» объединены деревья, которые происходят из Скандинавских стран и России.

Сосновые деревья растут в постоянной конкуренции за солнечные лучи, они отличаются большой высотой и ровными стволами. В нормальных условиях высота достигает до 48 м, примерно половина дерева не имеет сучьев (около 20 метров). Местность произрастания, климатические и экологические условия влияют на то, какой формы вырастет дерево. Ствол сосны бывает как стройным, так и кривым, сучковатым. Иногда можно наблюдать «косой» узор среза. Диаметр соснового ствола достигает 1 м, но чаще составляет от 40 до 60 см. Сосновые породы не требуют особых условий для роста и годовой прирост может быть до 7,8 м2. Наивысшее качество бруска имеют деревья в возрасте от 160 лет; средний возраст для рубки – 100-120 лет.

Сосновое ядро на вид легко отличить от наружного слоя (в отличие от ели, пихты). Наружные слои (от 2 до 20 см) светлые, с желтоватым или светло-красным оттенком. Пока срез свежий, ядро красновато-желтое, с течением времени этот цвет трансформируется в красно-коричневый. Визуально четко различимы годичные кольца, их размер находится в сильной зависимости от того, какие климатические условия сопровождали рост дерева. Так, средняя ширина годичных колец составляет 3 мм при общем разбросе от 1 до 10 мм. Поздняя древесина имеет более темный цвет. Визуально заметны смоляные каналы.

После атмосферной сушки в сосновом пиломатериале остается 12-15% влаги, показатель средней плотности при этом составляет 520 кг/м3, что делает породу одной из наиболее тяжелых среди хвойных. Происхождение дерева оказывает большое влияние на механические свойства бруса, поэтому разброс показателей широк. Если сосна произрастает на хорошо увлажненной почве, ширина годичных колец довольно велика, а процент поздней древесины невелик. Увеличивается плотность материала, а механические качества переходят на более низкий уровень.

Средние показатели породы свидетельствуют о том, что сосна более пригодна для использования в строительстве, чем ель. В пользу сосны говорит и относительно низкая склонность к деформации, а также хорошая вязкость.

Применение

Сосна великолепно удерживает крепежный материал (шурупы, гвозди), легко поддается обработке фрезером, фуганком и рубанком, хорошо склеивается. Обработка морилкой и краской проста и удобна, несмотря на то, что сосновый материал содержит довольно большое количество смолы.

Формы, в которых сосна поступает на потребительский рынок: кругляк, пиломатериал, шпон. Из сосновой доски делают фанеру, древесно-стружечную плиту. Хвойные породы деревьев, в том числе сосна, служат сырьем для бумажно-целлюлозных комбинатов. Интересный факт: в Германии невозможно себе представить изготовление бумаги без участия сосновых деревьев, так как производство налажено через сульфитный процесс (из экологических соображений). Из сосновых получаются бумажные материалы высокого качества, так как волокна древесины относительно длинные, если сравнивать с брусом лиственных пород, и поэтому легче поддаются перекручиванию.

Сосна широко распространена как материал для стройки и создания разнообразных конструкций, например, каркасов стен и крыш, а также для внутренней и внешней отделки. Из нее делают перила и лестницы, обшивку внутренних стен помещения, опорные балки для стен, окон и дверей, потолков, ворот. Пропитанная специальным составом против гниения доска используется для внешней отделки фасадов и для покрытия террас, в садово-ландшафтном дизайне и в производстве детских игрушек. Из импрегнированной древесины делают шпалы, мачты, сваи (в том числе для постройки плотин и портов).

В мебельном производстве сосновый материал занимает особое место, он используется не только в виде цельной древесины, но и в видоизмененном состоянии (древесно-стружечная плита). Из соснового бруса изготавливают простые предметы мебели, а шпон идет на дизайнерские элементы отделки. Также из сосны производят древесную вату, ящики и бочки, контейнеры и разного вида емкости.

Сосновые дрова ценятся весьма высоко благодаря теплоте сгорания 4,4 кВт?ч/кг (1700 кВт?ч/м?). В этом качестве сосновый материал используется в качестве дров для бытовых отопительных печей. Кроме того, из сосновых опилок делают брикеты и капсулы для специальных систем. Остатки стружки, которые в больших количествах образуются на лесопильном производстве, пользуются большим спросом на способных к работе с биологическими отходами электростанциях.

Посетители, просмотревшие эту статью, также заинтересовались следующими:

Древесина сосны обладает средней плотностьюи довольно высокой прочностью. Она стойка к гниению и поражению грибком. В производстве мебели эта древесина особо ценна в результате малого количества сучков и незначительного изменения диаметра по длине ствола. Древесина сосны обладает высокой прочностью, что дает возможность использовать ее для возведения разнообразных конструкций.

Сосновая доска является наиболее распространенным строительным материалом. Не только, благодаря большим площадям лесов, но и в результате своих отличных качеств. Этот материал используется как в строительстве домов, так и для сооружения кораблей.

Сосновый брус - это очень популярный на сегодняшний день пиломатериал. Он характеризуется достаточно привлекательным внешним видом. Он обладает отличными тепло- и звукоизолирующими свойствами, а также довольно высокой прочностью, но при этом малым весом.

Ассортимент производимой из сосны мебели достаточно широк: комплекты для прихожей, спальные и кухонные гарнитуры, столы со стульями, офисная мебель. И это неудивительно, потому что мебель из сосновой древесины отличается красотой, практичностью и долговечностью.

Могучие, высокие и стройные сосны являлись отличной базой для постройки мощных судов, которыми известна Россия. Отсюда и название - корабельная сосна. Сосновые леса в старину называли «корабельными рощами», а сами суда - «плавучими соснами». В корабельных рощах сосны вырастают до 40 м и практически до 50 см в диаметре. В прошлом корабельные мастера интенсивно применяли сосновую смолу для пропитки канатов, парусов, осмолки пазов на кораблях и лодках.

Области применения сосны

Сосна обладает наиболее активным смоляным аппаратом среди хвойных таежной зоны. Поэтому она широко используется для прижизненного получения древесной смолы - живицы - путем подсочки.

В последние десятилетия расширяется получение пневого осмола, то есть канифоли и экстракционного скипидара (несколько отличающегося по составу от скипидара живичного), из оставшихся на вырубках сосновых пней.

Сосна служит основным объектом лесозаготовительной, деревообрабатывающей промышленности, поскольку сосновая древесина широко используется в строительстве, мебельном, тарном и многих других производствах, в лесохимии для гидролиза и получения целлюлозы.

Сосна выделяет в воздух много смолистых веществ, что делает ее одной из наиболее активных фитонцидных пород наших лесов.

Применение древесины сосны очень разнообразно. Она использует-ся в строительстве в качестве конст-рукционных и отделочных материалов, машиностроении, мебельном произ-водстве, железнодорожном транспор-те, тарном производстве, для крепле-ния горных выработок и др. Широко используется как сырье для химиче-ской переработки с целью получения целлюлозы, кормовых дрожжей. Из сосны добывают живицу, хвою сосны используют для получения биологиче-ски активных веществ.

Научная классификация Физические свойства
Домен: Эукариоты Средняя плотность: 520 кг/м³
Царство: Растения Пределы плотности: 300-860 кг/м³
Отдел: Хвойные Продольная усадка: 0,4 %
Класс: Хвойные (Pinopsida Burnett , 1835 ) Радиальная усадка: 4 %
Порядок: Сосновые Тангенциальная усадка: 7,7 %
Семейство: Сосновые Радиальное набухание : 0,19 %
Род: Тангенциальное набухание : 0,36 %
Международное научное название Прочность на сгиб: 80 Н/мм²

Pinus L. , 1753

Прочность на сжатие: 45 Н/мм²
Типовой вид Предел прочности: 100 Н/мм²

Pinus sylvestris — Сосна обыкновенная

Топливные свойства
4,4 кВт.ч/кг

Породы и виды сосны

Ducampopinus Strobus Pinus
  • Pinus aristata
  • Pinus balfouriana
  • Pinus bungeana
  • Pinus cembroides
  • Pinus edulis
  • Pinus gerardiana
  • Pinus krempfii
  • Pinus longaeva
  • Pinus monophylla
  • Pinus amamiana
  • Pinus armandii
  • Pinus ayacahuite
  • Pinus bhutanica
  • Pinus cembra
  • Pinus fenzeliana
  • Pinus flexilis
  • Pinus koraiensis
  • Pinus lambertiana
  • Pinus monticola
  • Pinus morrisonicola
  • Pinus parviflora
  • Pinus peuce
  • Pinus pumila
  • Pinus sibirica
  • Pinus strobiformis
  • Pinus strobus
  • Pinus wallichiana
  • Pinus albicaulis
  • Pinus bungeana
  • Pinus contorta
  • Pinus coulteri
  • Pinus densiflora
  • Pinus elliottii
  • Pinus halepensis
  • Pinus heldreichii
  • Pinus hwangshanensis
  • Pinus jeffreyi
  • Pinus mugo
  • Pinus nigra
  • Pinus palustris
  • Pinus pinaster
  • Pinus pinea
  • Pinus ponderosa
  • Pinus radiata
  • Pinus rigida
  • Pinus sabineana
  • Pinus sylvestris
  • Pinus tabuliformis
  • Pinus taeda
  • Pinus thunbergii
  • Pinus torreyana
  • Pinus virginiana

Полезные таблицы

Содержание различных элементов в древесине хвойных пород

Нормативная сопротивляемость чистой древесины сосны и ели

Вид сопротивления и характеристика элементов, находящихся под нагрузкой МПа (кгс/см²)
Сопротивление статическому изгибу R 1 :
для элементов, изготовленных из круглого леса с неослабленным поперечным сечением 16 (160)
для элементов с прямоугольным сечением (ширина 14 см, высота - 50 см) 15 (150)
для остальных элементов 13 (130)
Сопротивляемость сжатию R сж и поверхностному сжатию R п.сж. :
R п.сж. вдоль волокон 13 (130)
в плоскости, паралельной направлению волокон R п.сж.пл. 1,8 (18)
Сопротивление сжатию местной поверхности R п.сж. :
поперек волокон в опорных местах конструкции 2,4 (24)
в опорных зарубках 3 (30)
под металлическими подкладками (если углы приложения силы 90...60º) 4 (40)
Сопротивляемость растяжению вдоль волокон R раст.в. :
для элементов с неослабленным поперечным сечением 10 (100)
для элементов с ослабленным поперечным сечением 8 (80)
Сопротивляемость раскалыванию вдоль волокон R раск.в. 2,4 (24)
Сопротивляемость раскалыванию поперек волокон R раск.п. 1,2 (12)

Технические характеристики сосны

Характеристика Значение
Плотность 513кг/м3
Плотность в свежесрубленном состоянии 625 кг/м3
Жесткость в свежесрубленном состоянии, кг/см2 79
Жесткость в сухом виде, кг/см2 109
Удельный вес 0,51
Предел прочности при статическом изгибе, Мпа 71,8
Предел прочности при сжатии вдоль волокон, Мпа 34,8
Предел прочности при растяжении вдоль волокон, Мпа 84,1
Предел прочности при скалывании вдоль волокон, Мпа:
в радиальном направлении 6,2
в тангенциальном направлении 6,4
Твердость, Н/кВ.мм:
Торцовая 23,4
Радиальная 21,6
Тангенциальная 20,7
Модуль упругости при статическом изгибе, Гпа 8,8
Удельная работа при ударном изгибе, Дж/см3 1,6
Усушка, %:
В продольном направлении 0,4
В тангенциальном направлении 6-8
В радиальном направлении 3-4

Данные при 12% влажности; 1 МПа = 1 Н/мм2

Самым распространенным деревом во всем мире является сосна. Ее можно встретить в разных странах и климатических зонах. Всего насчитывают около 120 видов, и более 50 пород произрастает в России, но чаще всего можно встретить сосну обыкновенную. Сосновые деревья достигают в высоту 20-40 м, в диаметре - 40-60 см, иногда метр, а их возраст составляет 300-500 лет. Исключением является американская сосна-долгожитель, произрастающая в Неваде, которая растет уже около 4700 лет.

Как правило, рубку сосновых деревьев производят в возрасте 100-120 лет. Их преимуществом является быстрый рост, который зависит от температуры воздуха и количества осадков. При благоприятных условиях годовой прирост составляет до метра в высоту. Самым лучшим для строительной сосны считается климат северной полосы. У деревьев, произрастающих в этой зоне, небольшое межкольцевое расстояние и, соответственно, меньшая рыхлость и склонность к растрескиванию. Поэтому ценными считаются архангельская, карельская и ангарская сосны.

Годичные слои хорошо видны на сосновой древесине. Их ширина в среднем составляет 3 мм, однако может варьироваться от 1 до 10 мм. Граница между разными слоями очень четкая, при этом сердцевидные лучи выражены слабо, сосудов нет. Благодаря разному цвету ядра (от светло-розового до красновато-коричневого) и заболони (желтый или розоватый), их легко отличить друг от друга. Будучи хвойным деревом, сосна имеет смолу, поэтому на поздней древесине видно много крупных смоляных ходов.

Свойства сосны

Целебные свойства сосны были известны еще в древние времена, поэтому врачи использовали ее для борьбы с легочными заболеваниями - бронхит, пневмония, туберкулез, применяя хвою и смолы для лекарств, а также создавая лечебные санатории в борах. Физико-механические характеристики сосновой древесины способствуют ее использованию для строительства, производства декора и мебели.

Влажность ядра достигает 33% и не меняется по всей длине, а средние показатели наличия ваги в заболони составляют 112% и увеличиваются к вершине.

Плотность считается низкой. При стандартной влажности ее средний показатель составляет 505 кг/куб. м, а плотность полностью высушенной древесины - 480 кг/куб. м.

Усушка колеблется в зависимости от годичных слоев от 6.7% до 7.5%. Увеличение влажности воздуха влияет на коэффициенты разбухания: тангенциальный - 0.31, объемный - 0.5, радиальный - 0.18.

Влаго- и воздухопроницаемость древесины высокая, что позволяет хорошо обработать материал защитными и пропитками.

Теплоизоляция и термостойкость сосны очень высокие, поэтому она хорошо подходит для строительства домов и производства оконных рам. Например, ПВХ и алюминий, используемые для металлопластиковых окон, имеют более низкие теплоизоляционные показатели.

Электрическая проводимость отсутствует, так как сосна является диэлектриком.

Звукоизоляция древесины низкая. При строительстве деревянного дома для обеспечения требований СНиП необходимо делать перегородку от 10 см.

Восприимчивость к излучениям : рентгеновское не имеет воздействия, световое - до 3,5 см, нейтронное - до 10 см.

Несмотря на высокую прочность древесины, сосна считается мягким деревом, которое легко обрабатывается инструментами. Поэтому ее полюбили мастера, создающие мебель и декор. Еще одним плюсом является высокая стойкость к болезнетворным процессам - грибки, плесень, насекомые. Однако высокая влагопроницаемость сосны требует большего количества пропитки. К тому же перед нанесением сосновую древесину нужно обрабатывать щелочным раствором или бензином или спиртом из-за присутствия в ней смолы.

Области применения сосны

Это дерево является очень востребованным в разных сферах благодаря его качествам. Из него изготавливают профилированные и пиленые брусы, оцилиндрованные бревна, обрезные и необрезные доски для строительства. Блок-хаус, фальш-брус и вагонку применяют в качестве отделочных материалов. Например, сосна прекрасно подходит для отделки саун, поскольку помимо красивого внешнего вида источает приятный аромат и лечебные ферменты. Древесина используется для химической переработки, в машиностроении, железнодорожной сфере, горнодобывающей промышленности. Также она применяется для производства тары, а хвоя - биологически активных веществ.

Мебельные предприятия задействуют сосновую древесину в своей работе как основной материал, так и в качестве каркаса, который шпонируют другими породами. На ней легко создавать резные и мозаичные узоры. Она хорошо тонируется, поэтому ей можно придать любой цвет. Мебель из сосны является экологичной, надежной и красивой.

В этой статье:

Качество пиломатериалов зависит не только от размеров и породы дерева, соблюдения производителем всех тонкостей технологического процесса, а и от условий его произрастания. У древесины существует множество видов малоразличимых пороков развития и последствий механических повреждений, большинство из которых внешне практически незаметны (неопытному глазу, разумеется).

Любой дефект усложняет обработку, ослабляет прочностные качества дерева и изделий из него. Так какие же бывают пороки древесины и как их вовремя распознать?

Практическая польза от прогулки по лесу

Профессионалы знают, как проявляются пороки древесины, и способны еще до рубки дерева дать оценку его качеству методом индивидуальной таксации. Такая оценка нужна для предварительных расчетов по следующим вопросам:

  • каким будет выход качественного сырья;
  • на какой высоте ствол будет перепилен на отдельные части;
  • размеры отдельных отрезов, их практическое применение и т.д.

Например: таксируемый ствол сосны диаметром в 28 см на высоте 1м от земли имеет комлевую гниль. На высоте 1-7,5 м на стволе отсутствуют сучья, и древесина выглядит здоровой. На высоте 9,5 м находится сосновая губка (грибковое поражение ), от которой расходится стволовая гниль на 0,5 м вверх и 1,5 м вниз по стволу. На отрезке от 9,5 м до 15,5 м имеются лишь мертвые наружные сучья, а сама древесина выглядит здоровой.

Результаты таксации:

  • метровый комлевый слой используется на дрова;
  • 6,5 м – первосортный пиловочник;
  • 2м – пересорт (неизвестно, насколько глубоко поражение гнилью);
  • последние 6м – могут быть использованы как рудстойка.

Дефекты формы ствола

Недостатки древесины, которые возможно определить по внешнему виду пиловочника:

1. Сбежистость

Утончение ствола от комля к вершине – естественное явление, но если диаметр уменьшается на протяжении 1м больше чем на 1 см – это уже сбежистость. Такой порок характерен для растений, выросших в редком древостое. При обработке сбежистого ствола образуется высокое количество отходов, для древесины из таких бревен характерен и другой недостаток – радиальный наклон волокон.

2. Закомелистость ствола

Вариация сбежистости, при которой наблюдается значительное увеличение диаметра ствола у комель (превышение на 20% и более диаметра ствола на расстоянии 1м от расширения).

3. Кривизна

Искривление ствола возможно по ряду причин: вследствие потери верхушки и ее замены боковой ветвью, из-за изменения освещения, при росте на холмах и горных склонах и т.д. Процент кривизны рассчитывают как показатель стрелы прогиба ствола в месте искривления.

4. Овальность

Если форма торца круглого лесоматериала имеет форму эллипса, скорее всего при распиле будет обнаружена крень и тяговая древесина.

5. Наросты

Местные утолщения ствола, которые образуются в результате поражения дерева грибами, бактериями, химическими и радиационными реагентами, механическими повреждениями. У растения нарушаются ростовые процессы, что, естественно, отражается на качестве и структуре древесины: годичные слои изгибаются, повторяя очертания нароста.

Такой материал сложен в обработке, имеет высокую твердость и низкую упругость. Древесина наростов (кап, сувель ) ценится как сырье для художественных изделий и облицовочного материала (шпона).

6. Последствия механических повреждений

Прорость

Прорость – заросшая рана, содержащая мертвую древесину. Недавнее повреждение легко обнаружить при визуальном осмотре боковой поверхности ствола растущего дерева. Но при полном зарастании видна только щель, заполненная остатками коры.

Рак дерева

Рак дерева – результат деятельности грибков и бактерий – открытая или закрытая рана с аномальными утолщениями и наплывами возле пораженных мест. При этом дефекте нарушается правильность круглой формы бревна, а у хвойных пород сопровождается повышенной смолистостью.

Сухобокость

Сухобокость – одностороннее омертвление ствола, лишенного коры вследствие ожога, обдира, ушиба и т.д. Порок вызывает повышенную смоленистость, образование завитков и наплывов, нарушает прочностные качества древесины и увеличивает количество отходов при обработке.

Пороки строения древесины

Эти дефекты можно распознать по срезу бревна.

1) Неправильное расположение годичных слоев, волокон

Косослой

Косослой – отклонение волокон от продольной оси, который можно увидеть при распиле волокон.

Косослой может быть:

  • тангенциальный (неправильное направление сердцевинных лучей от продольной оси);
  • радиальный – при радиальном распиле обнаруживаются различные отклонения в промежутках между годичными кольцами.

Правильность наклона измеряют так: на боковой поверхности (наиболее типичное место образования дефекта) проводят линию, параллельную продольной оси. На протяжении 1м выявляют угол отклонения волокон и измеряют его в процентах. Чем выше этот показатель, тем ниже прочность древесины.

Кроме того, наклон волокон увеличивает естественную усушку в продольном направлении, случит причиной винтового коробления пиломатериалов, снижает показатели гибкости и усложняет механическую обработку древесины.

Выделяют следующие разновидности неправильного наклона:

Свилеватость

Свилеватость – волнообразное или хаотичное расположение волокон, встречается в комлевой части или около наростов типа капов. Этот дефект характерен для лиственных пород (например, березы ) и обычно ограничивается местными участками – поражение целого ствола встречается крайне редко.

Завиток и глазки

Завиток и глазки – искривление годовых колец в области сучков и проростей.

Крень

Крень – образуется в изогнутой или наклоненной к земле древесине. На пиломатериалах крень выглядит как тусклые темные полосы различной ширины. Наиболее часто встречается у спелодревесных пород (пихта, ель). У других представителей хвойных – сосны, лиственницы, кедра – крень выражена менее ярко.

Из-за присутствия порока ухудшается качество пиломатериалов, а при его поперечном распиле нередко зажимаются пилы оборудования.

Тяговая древесина

Тяговая древесина – антипод креневой. Она образуется на растянутой зоне искривленных ветвей или стволов. Такой дефект на распиле имеет светлую окраску с перламутровым оттенком, которая при сушке или под воздействием солнечных лучей окрашивается в темно-коричневый цвет. Древесину с тяговым пороком сложно обрабатывать: при распиле образуются ворсистые поверхности, отделяющиеся волокна забивают зубья пил.

2) Нерегулярные образования

Ложное ядро

Ложное ядро – темная внутренняя зона, границы которой не совпадают с годичными кольцами. Причиной образования дефекта могут быть сильные морозы, грибы, бактерии, реакция растущего дерева на механическое повреждение. Эта зона по прочности превосходит заболонь, но имеет низкие показатели гибкости.

Внутренняя заболонь

Внутренняя заболонь – образования в зоне ядра нескольких годичных слоев, идентичных по свойствам заболони: древесина легко пропускает жидкость, имеет низкую стойкость против гнили. Это явление наиболее часто встречается у ясеня и дуба.

Сердцевина

Сердцевина – центральная часть ствола с рыхлой древесиной. Для бревен не считается дефектом, а вот для пиломатериала – присутствие сердцевины нежелательно из-за подверженности к гнили и растрескиванию.

Пасынок

Пасынок – вторая вершина ствола, отмершая или отставшая в росте, которая пронизывает ствол под острым углом к оси. Обычно, пасынки протягиваются вдоль большей части бревна, что нарушает однородность строения, целостность и прочность древесины.

Сучки

Сучки овальные, продолговатые, круглые – следы от основания ветвей. Степень влияния сучков на прочностные свойства дерева зависит от его вида и размера. Наиболее опасны гнилые и «табачные» (с древесиной, легко растирающейся в порошок) – они сопровождаются скрытой гнилью.

Трещины

Трещины – расхождение и разрывы древесины внутри ствола, которые могут возникнуть от сильных морозов, водослоя, падения дерева при валке. Трещины способствуют проникновению грибков, влаги внутрь ствола, что провоцирует гниение.

3) Отложения в древесине

Водослой

Водослой – участки с повышенной влажностью в области ядра. Такая древесина отличается высокой гигроскопичностью, при сушке деформируется и растрескивается. На торцевом разрезе такие дефекты выглядят как темные пятна по центру распила; в продольном – как полосы, идущие вверх от комля к вершине.

Смоляные карманы

Смоляные карманы – полость между годичными слоями дерева, заполненная смолой, камедями. Могут быть сквозными или односторонними, величиной от миллиметра до 15см. Образуются от воздействия насекомых, механических повреждений, при нагревании ствола солнцем в сильный мороз.

Засмолок

Засмолок – пропитанный смолой участок хвойной древесины в области механического повреждения. Такая древесина имеет отличные показатели плотности и устойчивости к гниению, но плохо обрабатывается и склеивается.

С более подробной классификацией пороков и дефектов древесины можно ознакомиться в ГОСТе 2140-81 .

На древесину в процессе эксплуатации воздействует целый ряд факторов окружающей среды, приводя к ее старению и разрушению. Среди них: климатические (УФ - излучение, влажность, ветровые нагрузки, кислород воздуха) и биологические (грибные поражения, поражения насекомыми, бактериями, водорослями).

Процесс деструкции заложен самой природой для поддержания экологического равновесия, поэтому в естественных условиях древесина, с течением времени, разрушается до углекислого газа и воды - самых простых химических соединений

Изменение свойств древесины под
воздействием внешних факторов

Влияние сушки

В процессе сушки на сырую древесину происходит воздействие пара, нагретого сухого и влажного воздуха, токов высокой частоты других факторов, приводящих в конечном результате к снижению содержания свободной и связанной влаги.

Правильно проведенная камерная сушка древесины дает материал, вполне равноценный получаемому в результате атмосферной сушки. Но если высушивать древесину в камерах слишком быстро и при высокой температуре, то это не только может привести к растрескиванию и значительным остаточным напряжениям, но и оказать влияние на механические свойства древесины.

Согласно исследованиям, при высокотемпературной сушке с конечной температурой в камере 105-110°С продолжительность сушки сокращается в 1,5-2 раза по сравнению с продолжительностью атмосферной сушки, но прочность древесины сосны (в досках толщиной 30-60мм) снижается при сжатии вдоль волокон на 0,8-8,7%, радиальном скалывании на 1-12%. Ударная вязкость снижается на 5-10,5%.

Влияние высокотемпературной сушки изучалось многими исследователями. Несмотря на противоречивость выводов, вызванную разным подходом к истолкованию результатов исследований, эти работы показали, что высокотемпературная сушка приводит к ухудшению механических свойств древесины.

Продолжительность сушки резко сокращается при использовании электромагнитных колебаний СВЧ. Однако степень специфического влияния этого фактора на свойства древесины изучена не до конца.

Влияние повышенных температур

Повышение температуры вызывает снижение показателей прочности и других физико-механических свойств древесины. При сравнительно непродолжительном воздействии температуры до 100°С эти изменения обычно обратимы, т.е. они исчезают при возвращении к начальной температуре древесины.

Данные ЦНИИМОД показывают, что прочность при сжатии вдоль и поперек волокон понижается как с повышением температуры, так и с повышением влажности древесины. Одновременное действие обоих факторов вызывает бо льшее снижение прочности по сравнению с суммарным эффектом от их изолированного воздействия.

При достаточно длительном воздействии повышенной температуры (более 50°С) в древесине происходят необратимые остаточные изменения, которые зависят не только от уровня температуры, но и от влажности.

Исследования, проведенные на древесине показали, что под действием температуры 80-100°С в течении 16 суток предел прочности при сжатии вдоль волокон снижается на 5-10%, а ударная вязкость на 15-30% (наибольшее снижение обнаружилось для дуба, наименьшее - для сосны). Снижение происходит главным образом в течение первых 2-4 суток.

Исследование последствий воздействия высоких температур в диапазоне 80-140°С на механические свойства древесины показали, что механические свойства снижаются с увеличением температуры, продолжительности ее воздействия и влажности древесины.

Влияние низких температур

Низкие температуры оказывают обратное влияние на прочность древесины: прочность замороженной древесины заметно повышается. Лед обеспечивает повышение устойчивости стенок клеток. Этим объясняется рост значений пределов прочности на изгиб, сжатие и раскалывание.

Влияние ионизирующих излучений

Ионизирующие излучения снижают прочностные характеристики древесины. Объясняется это радиолизом (разложением) ее органических составляющих. Однако использование радиоизотопов в процессе неразрушающего контроля деталей из древесины и их лучевая стерилизация (смертельная доза для грибов и насекомых составляет примерно 1Мрад) не ведет к снижению механических свойств материала, потому что доза облучения ниже той, которая вызывает заметные разрушения в веществе древесины.

Влияние агрессивных жидкостей и газов

Под действием кислот и щелочей происходит изменение цвета и разрушение древесины. Смолистые вещества, содержащиеся в хвойной древесине, заметно ослабляют негативное воздействие агрессивных сред, поэтому от их воздействия меньше страдают изделия из лиственницы и больше (в два-три раза) - лиственные породы, особенно мягкие. Древесина, пораженная синевой, подвержена разрушению в большей степени, чем здоровая. Само собой разумеется, что разрушение древесины под действием кислот и щелочей приводит к снижению ее прочности.

Влияние морской и речной воды

Испытания показали, что после пребывания в речной воде в течение 10-30 лет прочность древесины практически не изменилась. При более длительном воздействии речной воды поверхностный слой (толщиной 10-15мм) постепенно теряет прочность и начинает разрушаться. В то же время за этим поверхностным слоем прочность остается в пределах нормы, определенной для здоровой древесины.

Если древесина находится в воде несколько сотен лет, ее свойства сильно меняются. Количественные и качественные показатели этих изменений зависят от породы древесины. Наиболее известны результаты воздействия речной воды на древесину дуба. Мореный дуб меняет свою окраску до зеленовато-черного или угольно-черного, что происходит в результате соединения дубильных веществ с солями железа. В насыщенном водой состоянии древесина мореного дуба сохраняет пластичность, но после высушивания становится более твердой и хрупкой по сравнению с обычным состоянием. Усушка мореного дуба в 1,5 раза больше, чем обычного, что объясняют сморщиванием (коллапсом) клеток с уменьшенной толщиной стенок, поэтому и растрескивается древесина мореного дуба при сушке больше обычного. Прочность мореного дуба при сжатии и статическом изгибе снижается в 1,5 раза.

Длительное воздействие морской воды приводит к заметному повышению твердости лиственницы. При строительстве Венеции около 400 тыс. штук лиственничных свай было забито для укрепления оснований различных сооружений. Позже часть свай была обследована. В заключении об их прочности сказано, что сваи из лиственничного леса, на которых основана подводная часть города, как будто окаменели. Дерево сделалось до того твердым, что и топор, и пила едва берет его.

Обследование же сосновых свай, взятых из портовых сооружений, показало, что за 30 лет эксплуатации они на 40-70% снизили свои прочностные свойства.

Биологические факторы разрушения

Механизм биодеструкции древесины

Так как древесина является естественным продуктом органического происхождения, то при определенных значениях температуры и влажности подвергается биологическому поражению.

Биологические факторы, или агенты биоразрушения древесины - это живые организмы, способные оказывать на древесину разрушающее воздействие, среди них:

  • грибы
  • насекомые
  • бактерии
  • водоросли
  • моллюски и ракообразные

Грибы являются самыми безжалостными истребителями древесины в природе.

Споры грибов находятся повсеместно в окружающей нас среде. Заразить древесину споры могут еще в лесу, при распиловке, транспортировке незащищенной древесины, а также при эксплуатации в строениях. В период зрелости гриб вырабатывает миллионы спор в сутки, и хотя много их погибает, но и достаточно переносится животными, насекомыми и ветром, приводя к заражению незащищенной древесины. Заражение может произойти и через грибницу, если зараженная часть соприкасается со здоровой древесиной. Стоит спорам грибов попасть в благоприятные условия, как они начинают бурно развиваться и портить древесину.

Одна из распространенных ситуаций - стройматериалы заготовлены зимой («зимний лес» считается наиболее здоровым), а его использование начинается только летом. Для хранения древесину сложили в штабель и накрыли полиэтиленом. Вроде бы все правильно. Вот только не учли парникового эффекта. А этот эффект - просто благодать для плесени. Тепло и влага - этого достаточно, чтобы грибы размножились и окрасили древесину.

Развитию грибных поражений древесины способствуют теплые (5-30°С) и влажные условия (W более 22%) окружающей среды, отсутствие воздухообмена.

Грибы, поражающие древесину, отличаются большим разнообразием - от плесени, окрашивающей древесину поверхностно до дереворазрушающих грибов, проникающих в толщу древесины, и разрушающих ее практически полностью.

Сплетение очень тонких грибных нитей (гиф) образует плодовое тело (грибницу, или мицелий). Споры зреют в специальных носителях - конидиях (такие грибы называются деревоокрашивающими и плесневыми), или в плодовых телах - такие грибы называются дереворазрушающими.

Грибы представляют большую и своеобразную группу одноклеточных и многоклеточных микроорганизмов. Общее число их видов, описанное к настоящему времени, составляет, по мнению различных авторов, от 10 до 250тыс. Они широко распространенны в природе во всех районах земного шара. Из очагов поражения материалов выделяют мицелиальные грибы самых различных родов, но чаще других порчу материалов вызывают представители двух родов: Aspergillus и Penicillium. Грибы имеют вегетативное тело мицелиального строения. Оно представляет собой систему разветвленных нитей - гиф, толщина которых колеблется от 2 до 30мкм. Гифы растут только в длину, и рост их практически не ограничен. Скорость роста колеблется от 0,1 до 6мм/час и зависит от скорости поступления питательных веществ. Мицелий начинает свое развитие из спор, прорастающих при определенной температуре и влажности. Сначала спора набухает, поглощая влагу из окружающей среды, затем оболочка ее разрывается, и появляется одна или несколько ростовых трубок, являющиеся началом нового мицелия. Первое время развитие гиф идет за счет запасных веществ споры, в дальнейшем - путем адсорбции питательных веществ из материала, подверженного биоповреждению.

В зависимости от характера роста различают субстратный и воздушный мицелий. Субстратный мицелий располагается на поверхности материала или пронизывает его вглубь. В этом случае повреждение имеет вид концентрического, прижатого к субстрату образования. Воздушный мицелий свободно поднимается над субстратом, соприкасаясь с ним только в отдельных точках. На нем обычно образуются органы размножения. В этом случае поврежденное место напоминает вату. Характер роста одного и того же гриба может меняться в зависимости от условий среды (состав питательных веществ, влажность и др.). Грибы размножаются либо частью мицелия, которая дает начало новому организму, либо спорами, образующимися на специальных гифах мицелия. Грибы образуют очень большое число спор.

Грибы, развивающиеся на древесине (ксилофилы, ксилотрофы), практически все принадлежат к трем классам высших грибов, имеющих разделенные на клетки (септированные) гифы. Это аскомицеты (Ascomycetes, сумчатые грибы), дейтеромицеты или несовершенные грибы (Deuteromycetes, Fungi imperfecti), и базидиомицеты (Basidiomycetes) - наиболее сильные разрушители.

На первой стадии при поражении, на древесине появляются грибы, питающиеся соками живого дерева. Такие как плесневые грибы Penicillium, Aspergillus, живущие на поверхности древесины. Затем в подготовленных плесневыми грибами оптимальных условиях начинают размножаться деревоокрашивающие грибы. Завершают разрушение древесины складские и дереворазрушающие грибы. Они вызывают сильное гниение древесины, приводящее к появлению продольных и поперечных трещин, а затем и минерализации древесины.

У плесневых грибов поверхностная часть грибницы развивается на поверхности древесины и образует на ней налет в виде скопления окрашенных спор, мицелия и органов спороношения. Под плесневым налетом древесина обычно не меняет цвета, хотя и пронизана гифами этих грибов. Отсутствие краски обусловлено тем, что находящиеся в древесине гифы бесцветны и не выделяют пигмента. На древесине обычно встречается плесень зеленоватая и белая, но иногда розовая, желтая или темная. Оптимальная влажность для развития плесневых грибов - 60-100%, при влажности 40% их рост замедляется. Плесневые грибы развиваются в температурном диапазоне 24-30°С. При температуре выше 80°С и ниже -10°С гибнут грибы, находящиеся в вегетативной стадии развития. Скорость развития плесени зависит от водопоглощения покрытия и влажности воздуха. Питательные вещества поступают в клетку в растворенном виде, поэтому для нормального развития грибов окружающая среда должна содержать большой процент воды. Плесневые грибы являются возбудителями окислительного брожения. В качестве промежуточных продуктов этого биохимического процесса образуются органические кислоты, такие как глюконовая, фумаровая, винная, яблочная, щавелевая, янтарная и лимонная. Эти кислоты разъедают органические материалы, т.е. древесину. Плесневение материалов сопровождается ухудшением внешнего вида древесины, снижающего сортность и стоимость пиломатериалов. Основные виды плесневых грибов: Sporotrichum, Trichoderma, Penicillium, Mucor, Thamnidiu, Cladosporium.

Рис.
A) Колонии
B) Под микроскопом
C) На древесине

Деревоокрашивающие грибы вызывают специфическую синевато-серую окраску заболони, называемую «синевой». Согласно общемировой практике, скидка за древесину пораженную синевой составляет от 20 до 50%. В России же нередко можно встретить ситуацию, когда древесину с дефектами синевы продают фактически по цене дров.

В зависимости от вида плесневого гриба, характера и условий заражения и распространения гиф грибов в древесине различают окраску поверхности и глубокую окраску.

Макроскопические признаки поражения древесины этими грибами в виде окраски обычно проявляются уже на 2-3 сутки после инфицирования. Это обусловлено тем, что молодой мицелий бесцветен и начинает выделять типичный пигмент не сразу. На поверхности древесины может развиваться воздушный мицелий и органы спороношения в виде пушистого или порошкообразного окрашенного налета. В зависимости от характера заражения и распространения в древесине гиф грибов различают поверхностную и глубокую синеву. Поверхностное окрашивание проникает в глубь древесины не более чем на 2мм. Оно часто имеет вид мелких пятен диаметром 10-20мм - округлых или овальных. Слегка вытянутая форма обусловлена более быстрым ростом грибов вдоль волокон. Ограниченное распространение грибов в глубь древесины связано с задержкой их роста в результате подсыхания древесины или действия каких-либо других неблагоприятных факторов. Реже - в результате особенностей развития самих грибов.

Глубокие окрасы проникают в древесину более чем на 2мм. Среди них различают сплошные, охватывающие всю заболонь (глубокая синева) и пятнистые, поражающие отдельные участки заболони.

Очень коварна подслойная синева, она образуется во внутренних слоях древесины, и не видна на поверхности. Обычно она возникает в том случае, если грибы прекращают своё развитие в наружных слоях древесины до появления окраски, но продолжают развиваться внутри древесины.

Глубина залегания окраски при подслойной синеве зависит от вида гриба, размера свойственной ему зоны бесцветного молодого мицелия (зоны скрытой синевы), ширина которой колеблется от 5 до 12мм.

Прокладочная синева возникает при укладке пиломатериалов на прокладку из неантисептированного сортамента или на сырые и зараженные рейки. Эти поражения ограничиваются местами соприкосновения пиломатериалов с прокладками, и в зависимости от условий и вида гриба могут быть глубокими и поверхностными. Грибы-возбудители синевы, попавшие из воздуха на поверхность свежеспиленной древесины в виде спор, при проникновении в глубь не дают окраски в течение двух и более недель (период бесцветной, скрытой синевы), а при благоприятной температуре воздуха и влажности древесины окрашивают её на третий-четвертый день.

Деревоокрашивающие грибы оптимально развиваются в диапазоне влажности 50-90%. В древесине, насыщенной водой, деревоокрашивающие грибы не способны развиваться из-за отсутствия кислорода. Для прорастания грибов этой группы необходима высокая влажность и аэрация.

Основными возбудителями синевы на хвойных породах являются грибы из класса Ascomycetes: Ophistoma coerulea, O. piceae, O. pini, Endoconidiophora sp. и из класса Deuteromycetes: Hormonema dematiodes, Trichosporium tingens, Claosporium herbarum, а так же грибы следующих групп: Stemphulium, Cladosporium, Alternaria, Sporodesmium, Phialophora, Aposhaeria, Discula, Burgoa, Leptographium, Sortaria, Verticillium, Fusarium, Aspergillius, Penicillium, Paecilomyces, Trichoderma, Chaetomium, Trichosporium, Pullularia. Эти грибы вызывают разрушения древесины по типу «умеренной гнили». Причем разные грибы, вызывая разрушения анатомически различного характера, в разной степени снижают механические свойства древесины. Глубина поражения этими грибами составляет 0,5-3мм. Особые деструктирующие гифы способны поражать стенки паренхимных клеток серцевинных лучей и смоляных ходов, что приводит к увеличению скорости водо- и влагопоглощения древесины. Вследствие чего понижается сопротивление ее к ударному изгибу.

A) Колонии
B) Под микроскопом
C) На древесине

Деревоокрашивающие грибы в различной степени способны изменять свойства древесины.

Грибы плесени и синевы портят внешний вид, снижают сортность древесины, увеличивают водопоглощение и продуцируют миллионы спор, которые могут вызвать аллергические заболевания человека.

После одномесячного воздействия грибов синевы на древесину скорость водопоглощения сосны может возрасти в 1,5 раза. При дальнейшем развитии грибов многие из них способны разрушать стенки сердцевидных лучей и вторичных слоёв клеточных стенок по типу, близкому к умеренной гнили.

Деревоокрашивающие грибы - это только начало процесса, способного привести к тотальному поражению древесины более страшными врагами - дереворазрушающими грибами, представляющими реальную опасность для деревянной конструкций.

Состругивание синевы с поверхности пиломатериалов может не обеспечить полного удаления скрытой синевы, Наиболее эффективным мероприятием по предохранению древесины от порашения синевой при воздушной сушке является антисептирование.

Дереворазрушающие грибы

Некоторые классы грибов могут разрушать клеточные стенки древесины и существенно изменять ее физико-механические свойства. Такой процесс называется гниением древесины, а вызывающие его грибы - дереворазрушающими. Гниение является основной причиной разрушения древесины.

Существует множество дереворазрушающих грибов. Они различаются между собой по форме, строению и окраске грибницы, шнуров, плодовых тел и спор, а также по скорости и силе разрушения древесины.

Наиболее сильными разрушителями являются грибы, относящиеся к классу базидиомицетов. Ксилотрофные базидиомицеты - это грибы, образующие крупные плодовые тела (карпофоры), спорообразующий слой которых называют гименофором. На поверхности древесины они помимо воздушного мицелия образуют и другие вегетативные мицелиальные структуры.

Дереворазрушающие грибы способны увлажнять древесину в процессе освоения за счет воды, образующейся при разложении целлюлозы. Возбудители биоповреждений древесины, относятся в основном к следующим группам грибов: Coniophora, Tyromyces, Zentinus, Serpula, Gloeophyllum, Trametes, Pleurotus, Schizophyllum.

А) Так они портят древесину
Б) Колонии Serpula lacrimans

Характер гниения зависит от того, какими ферментами гриб воздействует на древесину, какие компоненты клеточных оболочек и в какой последовательности он разрушает.

В начале деятельности дереворазрушающих грибов внешний вид древесины не изменяется, и присутствие грибных нитей в ней можно обнаружить только под микроскопом, в тонком срезе. В дальнейшем древесина изменяет свой естественный цвет, становится желтой или красноватой, а затем бурой и коричневой. Плотность и прочность древесины постепенно снижаются, она становится лёгкой, мягкой, теряет вязкость.

Гниль такого типа называют деструктивной. Она характерна главным образом для грибов, разрушающих деревянные части построек, так называемых домовых грибов.

Домовые грибы представляют собой группу дереворазрушающих микроорганизмов, приспособившихся к условиям среды в зданиях и сооружениях. При своем развитии эти грибы образуют на поверхности древесины видимые глазом нити, которые называют грибницей. Грибница, уплотняясь, превращается в пленки, шнуры и плодовые тела, на которых образуются споры. Ярким представителям класса дереворазрушающих грибов является Coriolus sinuosus - белый домовой гриб.

Некоторые грибы, поражающие растущие деревья, вызывают гниль другого типа - коррозионную, при которой вначале появляются небольшие светлые пятна и ямки, а затем древесина расщепляется на отдельные волокна. Эта группа грибов использует в первую очередь лигнин древесины, оставляя нетронутой целлюлозу, белые пятна и выцветы которой видны на поверхности среза. К коррозионной гнили также относятся сердцевинные гнили: пестрая, ямчатая, ситовая.

При развитии умеренной (Softrot) гнили поверхностные слои древесины теряют свою структуру и превращаются в мягкую темную грязеподобную массу. После подсушивания древесины в пораженном слое наблюдается сильное усыхание и появление мелких продольных и поперечных трещин. Возбудителями умеренной гнили являются комплексы из некоторых несовершенных грибов, бактерий, водорослей.

По типу образующейся гнили вид гниения древесины можно охарактеризовать и следующим образом:

Белая гниль разрушает все структурные компоненты древесины, приводя к появлению характерного волокнообразного и бледного внешнего вида. Это основной вид гнилостных грибов, приводящих к гниению лиственных пород, не имеющих контакта с землей.

Бурая гниль «раскалывает» целлюлозу, что вызывает расщепление древесины. Участок дерева, пораженный такой гнилью, становится коричневым. Дерево темнеет, трескается и рассыпается. Гриб разрастается катастрофически быстро, особенно в постройках из мягкого дерева; древесина сосны и дуба повреждается домовым грибом меньше. Поражение такими грибами деревянных сооружений наносит существенный вред несущим конструкциям, не говоря уже об эстетических характеристиках дома.

Мягкая гниль . Гниение здесь в основном затрагивает древесину, контактирующую с почвой и находящуюся в морской среде. Сильнее всего поражает древесину с высоким содержанием влаги.

Другие агенты биоповреждений

Насекомые древоточцы

Древесину повреждают различные насекомые - жуки (усачи, златки, короеды, долгоносики, дровосеки, точильщики), рогохвосты, термиты, муравьи и другие. Некоторые из них проделывают ходы только в коре, а многие углубляются в древесину.

Личинки насекомых проделывают в древесине ходы и отверстия - червоточины. Находясь в древесине, древоточцы способны прогрызать ходы до 40 метров в длину.

Поражения насекомыми бывают настолько значительными, что части дерева теряют свою прочность. Часто при незначительном числе наружных отверстий древесина бывает полностью разрушена внутри.

Отдельной проблемой, связанной с международной торговлей древесиной, является импорт тропических сортов, уже пораженных насекомыми.


Рис.

Из вредителей наиболее опасен мебельный точильщик. Он проделывает в древесине многочисленные ходы диаметром до 2 миллиметров, разрушая мебель, а также конструктивные элементы и части зданий и сооружений, превращая древесину в пылеобразную массу под сохранившимся тонким наружным слоем.

Бактерии

Бактерии разрушают древесину ограниченно, они, размножаясь делением клеток, не могут продвигаться в древесине, за исключением той, которая находится под водой. Бактерии имеют тенденцию создавать колонии в клетках древесины, используя белки в качестве источников питания. Бактерии способны разрушать полисахариды и лигнин. Воздействие бактерий ограничивается заболонной древесиной, компоненты ядровой древесины устойчивы к этому воздействию.

Водоросли

Водоросли обычно выглядят как зеленые наросты, в особенности на северной стороне деревянных фасадов. Их рост является следствием слишком высокого содержания поверхностной влаги.

Сами по себе водоросли не вызывают гниения, но являются показателем повышенного содержания влаги в древесине, с чем связывается риск повреждения грибами.

Ракообразные и моллюски

Ракообразные и моллюски поражают древесину, находящуюся в морской воде. Взрослые особи и их личинки разрушают древесину вследствие механического процесса сверления и поедают ее. Ходы корабельного червя сначала идут перпендикулярно поверхности на глубину 10-30мм, затем поворачивают и идут по годичным слоям вверх и вниз, при этом отдельные ходы никогда не пересекаются и не сливаются. Повреждения портовых сооружений и судов морскими древоточцами-моллюсками и ракообразными относят к трухлявой червоточине.

Климатические факторы разрушения

При эксплуатации в постройках древесина испытывает на себе постоянное влияние природных факторов, которые в совокупности с агентами биоразрушения приводят к ухудшению внешнего вида, старению и разрушению древесины.

Ветер, пыль, осадки, перепады температур, приводят к усушке, набуханию, образованию трещин, короблению, накоплению влаги, увеличению риска биологического поражения древесины.

Солнечная радиация приводит к химическому изменению целлюлозы, разрушению лигнина, древесина приобретает сероватый оттенок и ворсистость.

Наибольший вред древесине приносит изменение влажности и солнечное излучение.

При постоянно меняющихся погодных условиях содержание влаги в древесине будет изменяться, что ведет к усушке, или разбуханию. Со временем в древесине образуются трещины, она коробится, что, в свою очередь, повышает риск попадания дождевой воды в древесину. Поскольку вода, находящаяся в жидком состоянии, может уйти из древесины только посредством (медленного) испарения, со временем повышается риск накопления влаги. Если содержание влаги превышает 20%, опасность поражения грибами повышается. Чем дольше период, в течение которого уровень влаги держится на отметке выше 20%, тем выше риск развития грибов. Многие виды древесины содержат цветные водорастворимые соединения, которые подвергаются выщелачиванию водой, что приводит к изменению цвета поверхности древесины.

Солнечный свет и тепло

Солнечный свет неоднороден по своей природе, он состоит из изучений разных длин волн, каждое из которых имеет свою особенность воздействия на древесину.

ИК-составляющая спектра, с длиной волны более 720нм, при взаимодействии с древесиной нагревает ее. Поскольку древесина является хорошим изолирующим материалом, нагревается только внешняя поверхность. Это означает, что на поверхности, вследствие усушки, вызванной повышенными температурами, могут образовываться трещины.

Повышенные температуры также вызывают смолотечение из сучков и отложения смолы в древесине хвойных пород, а это ведет к проблемам при обновлении покрытий поверхности.

Видимый свет (длина волны 380-720нм) не оказывает вредного влияния на древесину.

УФ-составляющая спектра с длиной волны менее 380нм, вызывает разрушение древесины на молекулярном уровне - деструкцию лигнина. В итоге, древесина быстро темнеет, и волокна отслаиваются и поднимаются.

Древесина приобретает серый цвет и становится ворсистой. Для сохранение первоначального цвета древесины ее необходимо защищать пленкообразующими зищитно-декоративными покрытиями содержащими УФ-фильтр. К таким покрытиям относится тонирующий антисептик «СЕНЕЖ АКВАДЕКОР ».

Древесина, как строительный материал:

  • Часть IV: Факторы разрушения древесины