Рентгенография - это один из способов исследования, основанный на получении фиксированного на определенном носителе, чаще всего в этой роли выступает рентгеновская пленка.

Новейшие цифровые аппараты могут фиксировать такое изображение еще и на бумаге или на экране дисплея.

Основана рентгенография органов на прохождении лучей через анатомические структуры организма, в результате которого и получается проекционное изображение. Чаще всего рентген используется в качестве диагностического метода. Для большей информативности выполнять рентгеновские снимки лучше в двух проекциях. Это позволит более точно определить расположение исследуемого органа и наличие патологии, если таковая имеется.

Наиболее часто прибегают к исследованию грудной клетки с использованием такого метода, но рентген других внутренних органов также можно сделать. Рентген-кабинет имеется практически в каждой поликлинике, поэтому пройти такое исследование не составит особого труда.

С какой целью проводится рентгенография

Этот вид исследования проводится в целях диагностики специфических поражений внутренних органов при инфекционных заболеваниях:

  • Воспалении легких.
  • Миокардите.
  • Артрите.

Выявить заболевания органов дыхания и сердца с помощью рентгена также возможно. В некоторых случаях при наличии индивидуальных показаний проведение рентгенографии необходимо для исследования черепа, позвоночного столба, суставов, органов пищеварительного тракта.

Показания к проведению

Если для диагностирования некоторых заболеваний рентген является дополнительным методом исследования, то в некоторых случаях его назначают как обязательный. Обычно это бывает, если:

  1. Имеется подтвержденное поражение легких, сердца или других внутренних органов.
  2. Необходимо проконтролировать эффективность терапии.
  3. Есть необходимость проверить правильность установки катетера и

Рентгенография - это метод исследования, который применяют повсеместно, он не представляет особой сложности как для медперсонала, так и для самого пациента. Снимок является таким же медицинским документом, как и другие заключения исследований, поэтому может предъявляться разным специалистам для уточнения или подтверждения диагноза.

Чаще всего каждый из нас проходит рентгенографию грудной клетки. Основными показателями для ее проведения являются:

  • Длительный кашель, сопровождающийся болью в груди.
  • Выявление туберкулеза, опухолей легких, пневмонии или плеврита.
  • Подозрение на тромбоэмболию легочной артерии.
  • Имеются признаки сердечной недостаточности.
  • Травматическое повреждение легких, переломы ребер.
  • Попадание инородных тел в пищевод, желудок, трахею или бронхи.
  • Профилактический осмотр.

Довольно часто, когда требуется пройти полное обследование, рентгенография назначается в числе прочих методов.

Преимущества рентгена

Несмотря на то что многие пациенты опасаются лишний раз получать проходя рентгенографию, этот метод имеет много преимуществ по сравнению с другими исследованиями:

  • Он не только самый доступный, но и вполне информативный.
  • Довольно высокое пространственное разрешение.
  • Для прохождения такого исследования не нужна специальная подготовка.
  • Рентгеновские снимки можно хранить длительное время для контроля динамики лечения и выявления осложнений.
  • Дать оценку снимку могут не только врачи-рентгенологи, но и другие специалисты.
  • Есть возможность проводить рентгенографию даже лежачим больным с помощью мобильного аппарата.
  • Этот метод также считается одним из самых дешевых.

Так что, если хотя бы раз в год проходить такое исследование, вреда организму не причинишь, а вот выявить серьезные заболевания на начальном этапе развития вполне возможно.

Методы проведения рентгенограммы

В настоящее время существует два способа проведения рентгенограммы:

  1. Аналоговый.
  2. Цифровой.

Первый из них более старый, проверенный временем, но требующий некоторого времени, чтобы проявить снимок и увидеть на нем результат. Цифровой метод считается новым и сейчас он постепенно вытесняет аналоговый. Результат выводится сразу на экран, и можно его распечатать, причем не один раз.

Цифровая рентгенография имеет свои преимущества:

  • Существенно повышается качество снимков, а значит информативность.
  • Простота проведения исследования.
  • Возможность получения мгновенного результата.
  • На компьютере есть возможность обработки результата с изменением яркости и контраста, что позволяет более точно выполнить количественные измерения.
  • Результаты могут храниться длительное время в электронных архивах, можно даже по интернету передавать их на расстояния.
  • Экономическая эффективность.

Минусы рентгенографии

Несмотря на многочисленные преимущества метод рентгенографии имеет и свои недостатки:

  1. Изображение на снимке получается статичным, что не дает возможности оценить функциональность органа.
  2. При исследовании мелких очагов информативность недостаточная.
  3. Плохо выявляются изменения в мягких тканях.
  4. Ну и, конечно, нельзя не сказать про отрицательное влияние ионизирующего излучения на организм.

Но как бы там ни было, рентгенография - это метод, который продолжает оставаться самым распространенным для выявления патологий легких и сердца. Именно он позволяет выявить туберкулез на ранней стадии и спасти миллионы жизней.

Подготовка к прохождению рентгенографии

Этот метод исследования отличается тем, что предварительно не требует проведения специальных подготовительных мероприятий. Требуется только в назначенное время прийти в рентген-кабинет и сделать рентгенографию.

Если такое исследование назначается с целью обследования пищеварительного тракта, то потребуются следующие способы подготовки:

  • Если нет отклонений в работе ЖКТ, то специальных мер принимать не следует. При избыточном метеоризме или запорах рекомендовано поставить очистительную клизму за 2 часа до исследования.
  • При наличии в желудке большого количества пищи (жидкости) следует сделать промывание.
  • Перед проведением холецистографии используют рентгеноконтрастный препарат, который проникает в печень и накапливается в желчном пузыре. Чтобы определить сократительную способность желчного пузыря, пациенту дают желчегонное средство.
  • Чтобы холеграфия была более информативна, перед ее проведением вводят внутривенно контрастное вещество, например «Билигност», «Билитраст».
  • Предваряют ирригографию контрастной клизмой с сульфатом бария. Перед этим больной должен выпить 30 г касторового масла, вечером сделать очистительную клизму, не ужинать.

Техника проведения исследования

В настоящее время практически все знают, где сделать рентген, что собой представляет данное исследование. Методика его проведения заключается в следующем:

  1. Пациента ставят перед если требуется, то исследование проводят в положении сидя или лежа на специальном столе.
  2. При наличии вставленных трубок или шлангов необходимо удостовериться, что они не сместились во время подготовки.
  3. До окончания исследования пациенту запрещено совершать какие-либо движения.
  4. Медицинский работник перед началом рентгенографии покидает помещение, если его присутствие обязательно, то надевает свинцовый фартук.
  5. Снимки чаще всего делаются в нескольких проекциях для большей информативности.
  6. После проявления снимков проверяют их качество, при необходимости может потребоваться повторное исследование.
  7. Для уменьшения проекционного искажения необходимо часть тела помещать как можно ближе к кассете.

Если рентгенография проводится на цифровом аппарате, то изображение отображается на экране, и врач может сразу видеть отклонения от нормы. Результаты сохраняются в базе данных и могут длительное время храниться, при необходимости можно распечатать на бумаге.

Как проводится интерпретация результатов рентгенографии

После проведения рентгенографии необходимо правильно интерпретировать ее результаты. Для этого врач оценивает:

  • Расположение внутренних органов.
  • Целостность костных структур.
  • Расположение корней легких и их контрастность.
  • Насколько различимы главные и мелкие бронхи.
  • Прозрачность легочной ткани, наличие затемнений.

Если проводилась то необходимо выявить:

  • Наличие переломов.
  • Выраженную с увеличением головного мозга.
  • Патологию «турецкого седла», которая появляется в результате повышенного внутричерепного давления.
  • Наличие опухолей мозга.

Чтобы поставить правильный диагноз, результаты рентгенографического исследования обязательно надо сопоставить с другими анализами и функциональными пробами.

Противопоказания к проведению рентгенографии

Всем известно, что лучевые нагрузки, которые испытывает организм во время проведения такого исследования, могут приводить к радиационным мутациям, несмотря на то что они совсем незначительные. Чтобы риск свести к минимуму, необходимо делать рентген только строго по назначению врача и с соблюдением всех правил защиты.

Надо различать диагностическую и профилактическую рентгенографию. Первая практически не имеет абсолютных противопоказаний, но необходимо помнить, что всем подряд ее делать также не рекомендуется. Такое исследование должно быть оправдано, не стоит самому себе его назначать.

Даже во время беременности, если с помощью других методов не удается поставить правильный диагноз, не запрещено прибегать к рентгенографии. Риск для пациента всегда меньше того вреда, который может принести вовремя не выявленное заболевание.

В целях профилактики рентгенографию нельзя делать беременным женщинам и детям до 14 лет.

Рентгенографическое исследование позвоночника

Рентгенография позвоночника проводится достаточно часто, показаниями для ее проведения являются:

  1. Боли в спине или конечностях, появление чувства онемения.
  2. Выявление дегенеративных изменений в межпозвоночных дисках.
  3. Необходимость выявить травмы позвоночника.
  4. Диагностирование воспалительных заболеваний позвоночного столба.
  5. Обнаружение искривлений позвоночника.
  6. Если есть необходимость распознать врожденные аномалии развития позвоночника.
  7. Диагностирование изменений после оперативного вмешательства.

Проводится процедура рентгенографии позвоночника в положении лежа, предварительно надо снять с себя все украшения и раздеться по пояс.

Врач обычно предупреждает, что во время обследования нельзя двигаться, чтобы снимки не получились смазанными. Процедура не занимает более 15 минут и пациенту не доставляет неудобства.

Имеются свои противопоказания для проведения рентгенографии позвоночника:

  • Беременность.
  • Если в последние 4 часа было сделано рентгеновское исследование с применением соединения бария. В этом случае снимки качественными не получатся.
  • Ожирение также не позволяет получить информативные снимки.

Во всех остальных случаях этот метод исследования не имеет противопоказаний.

Рентген суставов

Такая диагностика является одним из основных методов исследования костно-суставного аппарата. Рентгенография суставов может показать:

  • Нарушения в структуре суставных поверхностей.
  • Наличие костных разрастаний по краю хрящевой ткани.
  • Участки отложения кальция.
  • Развитие плоскостопия.
  • Артриты, артрозы.
  • Врожденные патологии костных структур.

Такое исследование помогает не только выявить нарушения и отклонения, но и распознать осложнения, а также определиться с тактикой лечения.

Показаниями к рентгенографии суставов могут быть:

  • Боль в суставе.
  • Изменение его формы.
  • Болевые ощущения во время движений.
  • Ограниченная подвижность в суставе.
  • Полученная травма.

Если есть необходимость пройти такое исследование, то лучше спросить у лечащего врача, где сделать рентген суставов, чтобы получить максимально достоверный результат.

Требования к проведению лучевого исследования

Чтобы рентгенологическое исследование дало наиболее эффективный результат, оно должно проводиться с соблюдением некоторых требований:

  1. Исследуемая область должна располагаться в центре снимка.
  2. Если имеется повреждение трубчатых костей, то на снимке обязательно должен быть виден один из смежных суставов.
  3. При переломе одной из костей голени или предплечья на снимке должны быть зафиксированы оба сустава.
  4. Желательно проводить рентгенографию в разных плоскостях.
  5. Если есть патологические изменения в суставах или костях, то необходимо делать снимок симметрично расположенного здорового участка, чтобы можно было сравнить и оценить изменения.
  6. Для постановки правильного диагноза качество снимков должно быть высоким, иначе потребуется повторная процедура.

Как часто можно проходить рентгенографию

Влияние облучения на организм зависит не только от длительности, но и интенсивности воздействия. Доза напрямую зависит также и от оборудования, на котором проводится исследование, чем оно новее и современнее, тем она ниже.

Также стоит учитывать, что для различных участков тела имеется своя норма облучения, так как все органы и ткани имеют разную чувствительность.

Проведение рентгенографии на цифровых аппаратах снижает дозу в несколько раз, поэтому на них ее проходить можно чаще. Понятно, что любая доза вредна для организма, но стоит также понимать, что рентгенография - это исследование, которое может обнаружить опасные заболевания, вред от которых для человека гораздо больший.

Использование рентгеновских лучей с диагностической целью основано на способности их проникновения через ткани. Эта способность зависит от плотности органов и тканей, их толщины, химического состава. Поэтому проницаемость R-лучей различна и создает различную плотность теней на экране аппарата.

Эти методы позволяют изучить:

1) анатомические особенности органа

· его положение;

· размеры, форму, величину;

· наличие инородных тел, камней и опухолей.

2) исследовать функцию органа.

Современная рентгенологическая аппаратура позволяет получить пространственное изображение органа, видеозапись его работы, особым образом увеличить какую-либо его часть и т.д.

Виды рентгенологических методов исследования:

Рентгеноскопия – просвечивание тела рентгеновскими лучами, дающее изображение органов на экране рентгеновского аппарата.

Рентгенография – метод фотографирования с помощью рентгеновских лучей.

Томография – метод рентгенографии, позволяющий получать послойное изображение органов.

Флюорография – метод рентгенографии органов грудной клетки с получением снимков уменьшенных размеров на основе малого количества рентгеновских лучей.

Помните! Лишь при правильной и полной подготовке пациента инструментальное исследование дает достоверные результаты и является диагностически значимым!

Рентгенологическое исследование желудка

и двенадцатиперстной кишки

Цель:

· диагностика заболеваний желудка и двенадцатиперстной кишки.

Противопоказания:

· язвенные кровотечения;

· беременность, кормление грудью.

Оснащение :

· 150-200 мл взвеси сульфата бария;

· оснащения для очистительной клизмы;

· направление на исследование.

Порядок действий:

Этапы манипуляции Обоснование необходимости
1. Подготовка к манипуляции
1. Объяснить пациенту (членам семьи) цель и ход предстоящего исследования, получить информированное согласие. Обеспечение права пациента на информацию. Мотивация пациента к сотрудничеству. Дать пациенту письменную информацию, если он имеет трудности в обучении
2. Указать, к каким последствиям приведет нарушение рекомендаций медицинской сестры. Нарушения в подготовке приведут к затруднению исследования и неточности диагностики
3. Если пациент страдает метеоризмом, запорами – в течение 3-х дней до исследования назначается бесшлаковая диета № 4 (см. ниже), рекомендуется прием активированного угля. Перед рентгенологическим исследованием органов брюшной полости необходимо убрать «помехи» - скопления газов и каловых масс, затрудняющих проведение исследования. При вздутии кишечника вечером и утром (за 2 часа до исследования) можно поставить очистительную клизму.
4. Предупредить пациента: · легкий ужин накануне не позднее 19.00 (чай, белый хлеб, масло); · исследование проводится утром натощак, пациент не должен чистить зубы, принимать лекарства, курить, есть и пить. Обеспечение достоверности результата исследования.
5. Провести психологическую подготовку пациента к исследованию. Пациент должен быть уверен в безболезненности и безопасности предстоящего исследования.
6. В амбулаторных условиях предупредить пациента, чтобы он явился в рентгенологический кабинет утром, в назначенное врачом время. В стационарных условиях: проводить (или транспортировать) пациента в рентгенологический кабинет в назначенное время с направлением. Примечание: в направлении указать название метода исследования, Ф.И.О. пациента, возраст, адрес или номер истории болезни, диагноз, дату исследования.
  1. Выполнение манипуляции
1. В рентгенологическом кабинете пациент принимает внутрь взвесь сульфата бария в количестве 150-200 мл. В некоторых случаях доза контрастного вещества определяется врачом - рентгенологом.
2. Врач делает снимки.
  1. Окончание манипуляции
1. Напомнить пациенту о том, чтобы он доставил снимки лечащему врачу. В стационарных условиях: необходимо провести пациента в палату, обеспечить наблюдение и покой.

Важной составной частью функционального анализа зубов, челюстей и ВНЧС является рентгенография. К рентгенологическим методам исследования относятся внутриротовая дентальная рентгенография, а также ряд методов внеротовой рентгенографии: панорамная рентгенография, ортопантомография, томография ВНЧС и телерентгенография.

На панорамной рентгенограмме видно изображение одной челюсти, на ортопантомограмме — обеих челюстей.

Телерентгенографию (рентгенография на расстоянии) применяют для изучения строения лицевого скелета. При рентгенографии ВНЧС используют методы Парма, Шюллера, а также томографию. Обзорные рентгенограммы малопригодны для функционального анализа: на них не видна суставная щель на всем протяжении, имеются проекционные искажения, наложения окружающих костных тканей.

Томография височно-нижнечелюстного сустава

Несомненные преимущества перед вышеназванными методами имеет томография (сагиттальная, фронтальная и аксиальная проекции), позволяющая видеть суставную щель, форму суставных поверхностей. Однако томография является срезом в одной плоскости и при этом исследовании невозможно оценить в целом положение и форму наружного и внутреннего полюсов головок ВНЧС.

Нечеткость суставных поверхностей на томограммах обусловлена наличием тени смазанных слоев. В области латерального полюса - это массив скуловой дуги, в области медиального полюса - каменистая часть височной кости. Томограмма бывает более четкой, если имеется срез в середине головки, а наибольшие изменения при патологии наблюдаются у полюсов головок.
На томограммах в сагиттальной проекции мы видим комбинацию смещения головок в вертикальной, горизонтальной и сагиттальной плоскостях. Например сужение суставной щели, обнаруживаемое на сагиттальной томограмме, может быть в результате смещения головки наружу, а не вверх, как принято считать; расширение суставной щели - смещение головки внутрь (медиально), а не только вниз (рис. 3.29, а).

Рис. 3.29. Сагиттальные томограммы ВНЧС и схема для их оценки. А - топография элементов ВНЧС справа (а) и слева (б) при смыкании челюстей в положении центральной (1), правой боковой (2) окклюзии и при открытом рте (3) в норме. Видна щель между костными элементами сустава - место для суставного диска; Б - схема для анализа сагиттальных томограмм: а - угол наклона заднего ската суставного бугорка к основной линии; 1 - переднесуставная щель; 2 - верхнесуставная щель; 3 - заднесустав-ная щель; 4 - высота суставного бугорка.

Расширение суставной щели на одной стороне и сужение ее на другой считают признаком смещения нижней челюсти в сторону, где суставная щель уже .

Внутренние и наружные отделы сустава определяются на фронтальных томограммах. Ввиду асимметрии расположения ВНЧС в пространстве лицевого черепа справа и слева на одной фронтальной томограмме не всегда удается получить изображение сустава с обеих сторон. Томограммы в аксиальной проекции применяют редко из-за сложной укладки пациента. В зависимости от задач исследования применяют томографию элементов ВНЧС в боковых проекциях в следующих положениях нижней челюсти: при максимальном смыкании челюстей; при максимальном открывании рта; в положении физиологического покоя нижней челюсти; в «привычной окклюзии».

При томографии в боковой проекции на томографе «Неодиагно-макс» укладывают больного на снимочный стол на живот, голову поворачивают в профиль таким образом, чтобы исследуемый сустав прилегал к кассете с пленкой. Сагиттальная плоскость черепа должна быть параллельна плоскости стола. При этом чаще всего используют глубину среза 2,5 см.

На томограммах ВНЧС в сагиттальной проекции при смыкании челюстей в положении центральной окклюзии в норме суставные головки занимают центрическое положение в суставных ямках. Контуры суставных поверхностей не изменены. Суставная щель в переднем, верхнем и заднем отделах симметрична справа и слева.

Средние размеры суставной щели (мм):

В переднем отделе - 2,2±0,5;
в верхнем отделе - 3,5±0,4;
в заднем отделе - 3,7+0,3.

На томограммах ВНЧС в сагиттальной проекции при открытом рте суставные головки располагаются против нижней трети суставных ямок или против вершин суставных бугров.

Для создания параллельности сагиттальной плоскости головы и плоскости стола томографа, неподвижности головы во время томографии и сохранения этого же положения при повторных исследованиях используют краниостат.

На томограммах в боковой проекции измеряют ширину отдельных участков суставной щели по методике И.И. Ужумецкене (рис. 3.29, б): оценивают размеры и симметричность суставных головок, высоту и наклон заднего ската суставных бугорков, амплитуду смещения суставных головок при переходе из положения центральной окклюзии в положение открытого рта.
Особый интерес представляет метод рентгенокинематографии ВНЧС. С помощью этого метода возможно изучение движения суставных головок в динамике [Петросов Ю.А., 1982].

Компьютерная томография

Компьютерная томография (КТ) позволяет получать прижизненные изображения тканевых структур на основании изучения степени поглощения рентгеновского излучения в исследуемой области. Принцип метода заключается в том, что исследуемый объект послойно просвечивается рентгеновским лучом в различных направлениях при движении рентгеновской трубки вокруг него. Непоглощенная часть излучения регистрируется с помощью специальных детекторов, сигналы от которых поступают в вычислительную систему (ЭВМ). После математической обработки полученных сигналов на ЭВМ строится изображение исследуемого слоя («среза») на матрице.

Высокая чувствительность метода КТ к изменениям рентгеновской плотности изучаемых тканей обусловлена тем, что получаемое изображение в отличие от обычного рентгеновского не искажается наложением изображений других структур, через которые проходит рентгеновский пучок. В то же время лучевая нагрузка на больного при КТ-исследовании ВНЧС не превышает таковую при обычной рентгенографии. По данным литературы, использование КТ и сочетание ее с другими дополнительными методами позволяют осуществить наиболее прецизионную диагностику, снизить лучевую нагрузку и решать те вопросы, которые решаются с трудом или совсем не решаются с помощью послойной рентгенографии.

Оценку степени поглощения излучения (рентгеновской плотности тканей) производят по относительной шкале коэффициентов поглощения (КП) рентгеновского излучения. В данной шкале за 0 ед. Н (Н - единица Хаунсфилда) принято поглощение в воде, за 1000 ед. Н. - в воздухе. Современные томографы позволяют улавливать различия плотностей в 4-5 ед. Н. На компьютерных томограммах более плотные участки, имеющие высокие значения КП, представляются светлыми, а менее плотные, имеющие низкие значения КП, темными.

С помощью современных компьютерных томографов III и IV поколений можно выделить слои толщиной 1,5 мм с моментальным воспроизведением изображения в черно-белом или цветном варианте, а также получить трехмерное реконструированное изображение исследуемой области. Метод позволяет бесконечно долго сохранять полученные томограммы на магнитных носителях и в любое время повторить их анализ посредством традиционных программ, заложенных в ЭВМ компьютерного томографа.

Преимущества КТ в диагностике патологии ВНЧС:

Полное воссоздание формы костных суставных поверхностей во всех плоскостях на основе аксиальных проекций (реконструктивное изображение);
обеспечение идентичности съемки ВНЧС справа и слева;
отсутствие наложений и проекционных искажений;
возможность изучения суставного диска и жевательных мышц;
воспроизведение изображения в любое время;
возможность измерения толщины суставных тканей и мышц и оценки ее с двух сторон.

Применение КТ для исследования ВНЧС и жевательных мышц впервые разработано в 1981 г. A.Hiils в диссертации, посвященной клинико-рентгенологическим исследованиям при функциональных нарушениях зубочелюстно-лицевой системы.

Основные показания к использованию КТ: переломы суставного отростка, краниофациальные врожденные аномалии, боковые смещения нижней челюсти, дегенеративные и воспалительные заболевания ВНЧС, опухоли ВНЧС, упорные суставные боли неясного генеза, неподдающиеся консервативной терапии.

КТ позволяет полностью воссоздать формы костных суставных поверхностей во всех плоскостях, не вызывает наложения изображений других структур и проекционных искажений [Хватова В.А., Корниенко В.И., 1991; Паутов И.Ю., 1995; Хватова В.А., 1996; Вязьмин А.Я., 1999; Westesson P., Brooks S., 1992, и др.]. Применение этого метода эффективно как для диагностики, так и дифференциальной диагностики органических изменений ВНЧС, не диагностируемых клинически. Решающее значение при этом имеет возможность оценки суставной головки в нескольких проекциях (прямые и реконструктивные срезы).

При дисфункции ВНЧС КТ-исследование в аксиальной проекции дает дополнительную информацию о состоянии костных тканей, положении продольных осей суставных головок, выявляет гипертрофию жевательных мышц (рис. 3.30).

КТ в сагиттальной проекции позволяет дифференцировать дисфункцию ВНЧС от других поражений сустава: травм, новообразований, воспалительных нарушений [Регtes R., Gross Sh., 1995, и др.].

На рис. 3.31 представлены КТ ВНЧС в сагиттальной проекции справа и слева и схемы к ним. Визуализировано нормальное положение суставных дисков.

Приводим пример использования КТ для диагностики заболевания ВНЧС.

Больная М ., 22 лет, обратилась с жалобами на боль и суставные щелчки справа при жевании в течение 6 лет. Во время обследования выявлено: при открывании рта нижняя челюсть смещается вправо, а затем зигзагообразно со щелчком влево, болезненная пальпация наружной крыловидной мышцы слева. Прикус ортогнатический с небольшим резцовым перекрытием, интактные зубные ряды, жевательные зубы справа стерты больше, чем слева; правосторонний тип жевания. При анализе функциональной окклюзии в полости рта и на моделях челюстей, установленных в артикулятор, выявлен балансирующий суперконтакт на дистальных скатах небного бугорка верхнего первого моляра (задержка стирания) и щечного бугорка второго нижнего моляра справа. На томограмме в сагиттальной проекции изменений не обнаружено. На КТ ВНЧС в той же проекции в положении центральной окклюзии смещение правой суставной головки назад, сужение заднесуставной щели, смещение вперед и деформация суставного диска (рис. 3.32, а). На КТ ВНЧС в аксиальной проекции толщина наружной крыловидной мышцы справа 13,8 мм, слева - 16,4 мм (рис. 3.32, б).

Диагноз: балансирующий суперконтакт небного бугорка 16 и щечного бугорка в левой боковой окклюзии,правосторонний тип жевания, гипертрофия наружной крыловидной мышцы слева, асимметрия размеров и положения суставных головок, мышечно-суставная дисфункция, дислокация кпереди диска ВНЧС справа, смещение суставной головки кзади.

Телерентгенография

Использование телерентгенографии в стоматологии позволило получать снимки с четкими контурами мягких и твердых структур лицевого скелета, проводить их метрический анализ и тем самым уточнять диагноз [Ужумецкене И.И., 1970; Трезубов В.Н., Фадеев Р.А., 1999, и др.].

Принцип метода заключается в получении рентгеновского снимка при большом фокусном расстоянии (1,5 м). При получении снимка с такого расстояния, с одной стороны, снижается лучевая нагрузка на пациента, с другой, уменьшается искажение лицевых структур. Применение цефалоста-тов обеспечивает получение идентичных снимков при повторных исследованиях.

Телерентгенограмма (ТРГ) в прямой проекции позволяет диагностировать аномалии зубочелюстной системы в трансверсальном направлении, в боковой проекции - в сагиттальном направлении. На ТРГ отображаются кости лицевого и мозгового черепа, контуры мягких тканей, что дает возможность изучить их соответствие. ТРГ используют как важный диагностический метод в ортодонтии, ортопедической стоматологии, челюстно-лице-вой ортопедии, ортогнатической хирургии. Применение ТРГ позволяет:
проводить диагностику различных заболеваний, в том числе аномалий и деформаций лицевого скелета;
планировать лечение этих заболеваний;
прогнозировать предполагаемые результаты лечения;
осуществлять контроль за ходом лечения;
объективно оценивать отдаленные результаты.

Так, при протезировании больных с деформациями окклюзионной поверхности зубных рядов использование ТРГ в боковой проекции дает возможность определить искомую протетическую плоскость, а следовательно, решить вопрос о степени сошлифовывания твердых тканей зубов и необходимости их девитализации.

При полном отсутствии зубов на телерентгенограмме можно на этапе постановки зубов проверить правильность нахождения окклюзионной поверхности.

Рентгеноцефалометрический анализ лица у пациентов с повышенной стираемостью зубов позволяет более точно дифференцировать форму данного заболевания, выбрать оптимальную тактику ортопедического лечения. Кроме того, оценив ТРГ, можно также получить информацию о степени атрофии альвеолярных частей верхней и нижней челюстей и определить конструкцию протеза.
Для расшифровки ТРГ снимок закрепляют на экране негатоскопа, прикрепляют к нему кальку, на которую переносят изображение.

Существует много методов анализа ТРГ в боковых проекциях. Одним из них является метод Шварца, основанный на использовании в качестве ориентира плоскости основания черепа. При этом можно определить:

Расположение челюстей по отношению к плоскости передней части основания черепа;
расположение ВНЧС по отношению к этой плоскости;
длину переднего основания че
репной ямки.

Анализ ТРГ - важный метод диагностики зубочелюстных аномалий, позволяющий выявить причины их формирования.

С помощью компьютерных средств можно не только повысить точность анализа ТРГ, сэкономить время их расшифровки, но и прогнозировать предполагаемые результаты лечения.

В.А.Хватова
Клиническая гнатология

Глава 2. Основы и клиническое применение рентгенологического метода диагностики

Глава 2. Основы и клиническое применение рентгенологического метода диагностики

Уже более 100 лет известны лучи особого рода, занимающие большую часть спектра электромагнитных волн. 8 ноября 1895 г. профессор физики Вюрцбург-ского университета Вильгельм Конрад Рентген (1845-1923) обратил внимание на удивительное явление. Изучая в своей лаборатории работу электровакуумной (катодной) трубки, он заметил, что при подаче тока высокого напряжения на ее электроды находящийся рядом платино-синеродистый барий стал испускать зеленоватое свечение. Такое свечение люминесцирующих веществ под воздействием катодных лучей, исходящих из электровакуумной трубки, было к тому времени уже известно. Однако на столе Рентгена трубка во время опыта была плотно завернута в черную бумагу и хотя платино-синеродистый барий находился на значительном расстоянии от трубки, его свечение возобновлялось при каждой подаче электрического тока в трубку (см. рис. 2.1).

Рис.2.1. Вильгельм Конрад Рис. 2.2. Рентгенограмма кис-

Рентген (1845-1923) ти жены В К Рентгена Берты

Рентген пришел к выводу, что в трубке возникают какие-то не известные науке лучи, способные проникать через твердые тела и распространяться в воздухе на расстояния, измеряемые метрами. Первой рентгенограммой в истории человечества было изображение кисти жены Рентгена (см. рис. 2.2).

Рис. 2.3. Спектр электромагнитных излучений

Первое предварительное сообщение Рентгена «О новом виде лучей» было опубликовано в январе 1896 г. В трех последующих публичных докладах в 1896-1897 гг. он сформулировал все выявленные им свойства неизвестных лучей и указал на технику их появления.

В первые дни после опубликования открытия Рентгена его материалы были переведены на многие иностранные языки, в том числе и на русский. В Петербургском университете и Военно-медицинской академии уже в январе 1896 г. с помощью Х-лучей были выполнены снимки конечностей человека, а позже и других органов. Вскоре изобретатель радио А. С. Попов изготовил первый отечественный рентгеновский аппарат, который функционировал в Кронштадтском госпитале.

Рентген первым среди физиков в 1901 г. за свое открытие был удостоен Нобелевской премии, которая была ему вручена в 1909 г. Решением I Международного съезда по рентгенологии в 1906 г. Х-лучи названы рентгеновскими.

В течение нескольких лет во многих странах появились специалисты, посвятившие себя рентгенологии. В больницах появились рентгеновские отделения и кабинеты, в крупных городах возникли научные общества рентгенологов, на медицинских факультетах университетов организовались соответствующие кафедры.

Рентгеновские лучи являются одним из видов электромагнитных волн, которые в общеволновом спектре занимают место между ультрафиолетовыми лучами и γ-лучами. Они отличаются от радиоволн, инфракрасного излучения, видимого света и ультрафиолетового излучения меньшей длиной волны (см. рис. 2.3).

Скорость распространения рентгеновских лучей равна скорости света - 300 000 км/с.

В настоящее время известны следующие свойства рентгеновских лучей. Рентгеновские лучи обладают проникающей способностью. Рентген сообщал, что способность лучей к проникновению через различные среды обратно

пропорциональна удельному весу этих сред. Вследствие малой длины волны рентгеновские лучи могут проникать сквозь объекты, непроницаемые для видимого света.

Рентгеновские лучи способны поглощаться и рассеиваться. При поглощении часть рентгеновских лучей с наибольшей длиной волны исчезает, полностью передавая свою энергию веществу. При рассеивании часть лучей отклоняется от первоначального направления. Рассеянное рентгеновское излучение не несет полезной информации. Часть лучей полностью проходит через объект с изменением своих характеристик. Таким образом формируется невидимое изображение.

Рентгеновские лучи, проходя через некоторые вещества, вызывают их флюоресценцию (свечение). Вещества, обладающие этим свойством, называются люминофорами и широко применяются в рентгенологии (рентгеноскопия, флюорография).

Рентгеновские лучи оказывают фотохимическое действие. Как и видимый свет, попадая на фотографическую эмульсию, они воздействуют на галоге-ниды серебра, вызывая химическую реакцию восстановления серебра. На этом основана регистрация изображения на фоточувствительных материалах.

Рентгеновские лучи вызывают ионизацию вещества.

Рентгеновские лучи оказывают биологическое действие, связанное с их ионизирующей способностью.

Рентгеновские лучи распространяются прямолинейно, поэтому рентгеновское изображение всегда повторяет форму исследуемого объекта.

Рентгеновским лучам свойственна поляризация - распространение в определенной плоскости.

Дифракция и интерференция присущи рентгеновским лучам, как и остальным электромагнитным волнам. На этих свойствах основаны рентгеноспек-троскопия и рентгеновский структурный анализ.

Рентгеновские лучи невидимы.

В состав любой рентгенодиагностической системы входят 3 основных компонента: рентгеновская трубка, объект исследования (пациент) и приемник рентгеновского изображения.

Рентгеновская трубка состоит из двух электродов (анода и катода) и стеклянной колбы (рис. 2.4).

При подаче тока накала на катод его спиральная нить сильно разогревается (накаляется). Вокруг нее возникает облачко свободных электронов (явление термоэлектронной эмиссии). Как только между катодом и анодом возникает разность потенциалов, свободные электроны устремляются к аноду. Скорость движения электронов прямо пропорциональна величине напряжения. При торможении электронов в веществе анода часть их кинетической энергии идет на образование рентгеновских лучей. Эти лучи свободно выходят за пределы рентгеновской трубки и распространяются в разных направлениях.

Рентгеновские лучи в зависимости от способа возникновения делятся на первичные (лучи торможения) и вторичные (лучи характеристические).

Рис. 2.4. Принципиальная схема рентгеновской трубки: 1 - катод; 2 - анод; 3 - стеклянная колба; 4 - поток электронов; 5 - пучок рентгеновских лучей

Первичные лучи. Электроны в зависимости от направления главного трансформатора могут перемещаться в рентгеновских трубках с различными скоростями, приближающимися при наибольшем напряжении к скорости света. При ударе об анод, или, как говорят, при торможении, кинетическая энергия полета электронов преобразуется большей частью в тепловую энергию, которая нагревает анод. Меньшая часть кинетической энергии преобразуется в рентгеновские лучи торможения. Длина волны лучей торможения зависит от скорости полета электронов: чем она больше, тем длина волны меньше. Проникающая способность лучей зависит от длины волны (чем волна короче, тем больше ее проникающая способность).

Меняя напряжение трансформатора, можно регулировать скорость электронов и получать либо сильно проникающие (так называемые жесткие), либо слабо проникающие (так называемые мягкие) рентгеновские лучи.

Вторичные (характеристические) лучи. Они возникают в процессе торможения электронов, но длина их волн зависит исключительно от структуры атомов вещества анода.

Дело в том, что энергия полета электронов в трубке может достигнуть таких величин, что при ударах электронов об анод будет выделяться энергия, достаточная, чтобы заставить электроны внутренних орбит атомов вещества анода «перескакивать» на внешние орбиты. В таких случаях атом возвращается к своему состоянию, потому что с внешних его орбит будет происходить переход электронов на свободные внутренние орбиты с выделением энергии. Возбужденный атом вещества анода возвращается к состоянию покоя. Характеристическое излучение возникает в результате изменений во внутренних электронных слоях атомов. Слои электронов в атоме строго определены

для каждого элемента и зависят от его места в периодической системе Менделеева. Следовательно, получаемые от данного атома вторичные лучи будут иметь волны строго определенной длины, поэтому эти лучи и называют характеристическими.

Формирование электронного облака на спирали катода, полет электронов к аноду и получение рентгеновских лучей возможны только в условиях вакуума. Для его создания и служит колба рентгеновской трубки из прочного стекла, способного пропускать рентгеновские лучи.

В качестве приемников рентгеновского изображения могут выступать: рентгенографическая пленка, селеновая пластина, флюоресцентный экран, а также специальные детекторы (при цифровых способах получения изображения).

МЕТОДИКИ РЕНТГЕНОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ

Все многочисленные методики рентгенологического исследования разделяют на общие и специальные.

К общим относятся методики, предназначенные для изучения любых анатомических областей и выполняемые на рентгеновских аппаратах общего назначения (рентгеноскопия и рентгенография).

К общим следует отнести и ряд методик, при которых также возможно изучение любых анатомических областей, но требуются либо особая аппаратура (флюорография, рентгенография с прямым увеличением изображения), либо дополнительные приспособления к обычным рентгеновским аппаратам (томография, электрорентгенография). Иногда эти методики называют также частными.

К специальным методикам относятся те, которые позволяют получить изображение на специальных установках, предназначенных для исследования определенных органов и областей (маммография, ортопантомография). К специальным методикам относится также большая группа рентгенокон-трастных исследований, при которых изображения получаются с применением искусственного контрастирования (бронхография, ангиография, экскреторная урография и др.).

ОБЩИЕ МЕТОДИКИ РЕНТГЕНОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ

Рентгеноскопия - методика исследования, при которой изображение объекта получают на светящемся (флюоресцентном) экране в реальном масштабе времени. Некоторые вещества интенсивно флюоресцируют под влиянием рентгеновских лучей. Эту флюоресценцию используют в рентгенодиагностике, применяя картонные экраны, покрытые флюоресцирующим веществом.

Больного устанавливают (укладывают) на специальном штативе. Рентгеновские лучи, пройдя сквозь тело больного (интересующую исследователя область), попадают на экран и вызывают его свечение - флюоресценцию. Флюоресценция экрана неодинаково интенсивна - она тем ярче, чем больше попадает рентгеновских лучей в ту или иную точку экрана. На экран

попадает тем меньше лучей, чем более плотные препятствия будут на их пути от трубки до экрана (например, костная ткань), а также чем толще ткани, через которые лучи проходят.

Свечение флюоресцентного экрана очень слабое, поэтому рентгеноскопия проводилась в темноте. Изображение на экране было плохо различимо, мелкие детали не дифференцировались, а лучевая нагрузка при таком исследовании была довольно высокой.

В качестве усовершенствованного метода рентгеноскопии применяют рентгенотелевизионное просвечивание с помощью усилителя рентгеновского изображения - электронно-оптического преобразователя (ЭОП) и замкнутой телевизионной системы. В ЭОП видимое изображение на флюоресцирующем экране усиливается, преобразуется в электрический сигнал и отображается на экране дисплея.

Рентгеновское изображение на дисплее, как и обычное телевизионное изображение, можно изучать в освещенном помещении. Лучевая нагрузка на пациента и персонал при применении ЭОП значительно меньше. Телесистема позволяет записать все этапы исследования, в том числе движение органов. Кроме того, по телеканалу изображение можно передать на мониторы, находящиеся в других помещениях.

При рентгеноскопическом исследовании формируется позитивное плоскостное черно-белое суммационное изображение в реальном масштабе времени. При перемещении больного относительно рентгеновского излучателя говорят о полипозиционном, а при перемещении рентгеновского излучателя относительно больного - о полипроекционном исследовании; и то и другое позволяет получить более полную информацию о патологическом процессе.

Однако рентгеноскопии, как с ЭОП, так и без него, свойствен ряд недостатков, сужающих сферу применения метода. Во-первых, лучевая нагрузка при рентгеноскопии остается относительно высокой (намного выше, чем при рентгенографии). Во-вторых, у методики низкое пространственное разрешение (возможность рассмотреть и оценить мелкие детали ниже, чем при рентгенографии). В связи с этим рентгеноскопию целесообразно дополнять производством снимков. Это необходимо также для объективизации результатов исследования и возможности их сравнения при динамическом наблюдении за больным.

Рентгенография - это методика рентгенологического исследования, при которой получается статическое изображение объекта, зафиксированное на каком-либо носителе информации. Такими носителями могут быть рентгеновская пленка, фотопленка, цифровой детектор и др. На рентгенограммах можно получить изображение любой анатомической области. Снимки всей анатомической области (голова, грудь, живот) называют обзорными (рис. 2.5). Снимки с изображением небольшой части анатомической области, которая наиболее интересует врача, называют прицельными (рис. 2.6).

Некоторые органы хорошо различимы на снимках благодаря естественной контрастности (легкие, кости) (см. рис. 2.7); другие (желудок, кишечник) отчетливо отображаются на рентгенограммах только после искусственного контрастирования (см. рис. 2.8).

Рис. 2.5. Обзорная рентгенограмма поясничного отдела позвоночника в боковой проекции. Компрессион но-ос-кольчатый перелом тела L1 позвонка

Рис. 2.6.

Прицельная рентгенограмма L1 позвонка в боковой проекции

Проходя через объект исследования, рентгеновское излучение в большей или меньшей степени задерживается. Там, где излучение задерживается больше, формируются участки затенения; где меньше - просветления.

Рентгеновское изображение может быть негативным или позитивным. Так, например, в негативном изображении кости выглядят светлыми, воздух - темным, в позитивном изображении - наоборот.

Рентгеновское изображение черно-белое и плоскостное (сум-мационное).

Преимущества рентгенографии перед рентгеноскопией:

Большая разрешающая способность;

Возможность оценки многими исследователями и ретроспективного изучения изображения;

Возможность длительного хранения и сравнения изображения с повторными снимками в процессе динамического наблюдения за больным;

Уменьшение лучевой нагрузки на пациента.

К недостаткам рентгенографии следует отнести увеличение материальных затрат при ее применении (рентгенографическая пленка, фотореактивы и др.) и получение желаемого изображения не сразу, а через определенное время.

Методика рентгенографии доступна для всех лечебных учреждений и применяется повсеместно. Рентгеновские аппараты различных типов позволяют выполнять рентгенографию не только в условиях рентгеновского кабинета, но и за его пределами (в палате, в операционной и т. д.), а также в нестационарных условиях.

Развитие компьютерной техники позволило разработать цифровой (дигитальный) способ получения рентгеновского изображения (от англ. digit - «цифра»). В цифровых аппаратах рентгеновское изображение с ЭОП поступает в специальное устройство - аналого-цифровой преобразователь (АЦП), в котором электрический сигнал, несущий информацию о рентгеновском изображении, кодируется в цифровую форму. Поступая затем в компьютер, цифровая информация обрабатывается в нем по заранее составленным программам, выбор которых зависит от задач исследования. Превращение цифрового образа в аналоговый, видимый происходит в цифро-аналоговом преобразователе (ЦАП), функция которого противоположна АЦП.

Основные преимущества цифровой рентгенографии перед традиционной: быстрота получения изображения, широкие возможности его постпроцессорной обработки (коррекция яркости и контрастности, подавление шума, электронное увеличение изображения зоны интереса, преимущественное выделение костных либо мяг-котканных структур и т. д.), отсутствие фотолабораторного процесса и электронное архивирование изображений.

Кроме того, компьютеризация рентгеновского оборудования позволяет быстро передавать изображения на значительные расстояния без потери качества, в том числе в другие лечебные учреждения.

Рис. 2.7. Рентгенограммы голеностопного сустава в прямой и боковой проекциях

Рис. 2.8. Рентгенограмма толстой кишки, контрастированной взвесью бария сульфата (ирригограмма). Норма

Флюорография - фотографирование рентгеновского изображения с флюоресцентного экрана на фотографическую пленку различного формата. Такое изображение всегда уменьшено.

По информативности флюорография уступает рентгенографии, но при использовании крупнокадровых флюорограмм различие между этими методиками становится менее существенным. В связи с этим в лечебных учреждениях у ряда пациентов с заболеваниями органов дыхания флюорография может заменять рентгенографию, особенно при повторных исследованиях. Такую флюорографию называют диагностической.

Основным назначением флюорографии, связанным с быстротой ее выполнения (на выполнение флюорограммы тратится примерно в 3 раза меньше времени, чем на выполнение рентгенограммы), являются массовые обследования для выявления скрыто протекающих заболеваний легких (профилактическая, или проверочная, флюорография).

Флюорографические аппараты компактны, их можно монтировать их в кузове автомобиля. Это делает возможным проведение массовых обследований в тех местностях, где рентгенодиагностическая аппаратура отсутствует.

В настоящее время пленочная флюорография все больше вытесняется цифровой. Термин «цифровые флюорографы» является в известной мере условным, поскольку в этих аппаратах не происходит фотографирования рентгеновского изображения на фотопленку, т. е. не выполняются флюо-рограммы в привычном смысле этого слова. По сути дела эти флюорографы представляют собой цифровые рентгенографические аппараты, предназначенные преимущественно (но не исключительно) для исследования органов грудной полости. Цифровая флюорография обладает всеми достоинствами, присущими цифровой рентгенографии вообще.

Рентгенография с прямым увеличением изображения может использоваться только при наличии специальных рентгеновских трубок, в которых фокусное пятно (площадь, с которой рентгеновские лучи исходят от излучателя) имеет очень малые размеры (0,1-0,3 мм 2). Увеличенное изображение получают, приближая исследуемый объект к рентгеновской трубке без изменения фокусного расстояния. В результате на рентгенограммах видны более мелкие детали, неразличимые на обычных снимках. Методика находит применение при исследовании периферических костных структур (кисти, стопы и др.).

Электрорентгенография - методика, при которой диагностическое изображение получают не на рентгеновской пленке, а на поверхности селеновой пластины с переносом на бумагу. Равномерно заряженная статическим электричеством пластина используется вместо кассеты с пленкой и в зависимости от разного количества ионизирующего излучения, попавшего в различные точки ее поверхности, по-разному разряжается. На поверхность пластины распыляют тонкодисперсный угольный порошок, который по законам электростатического притяжения распределяется по поверхности пластины неравномерно. На пластину накладывают лист писчей бумаги, и изображение переводится на бумагу в результате прилипания угольного

порошка. Селеновую пластину в отличие от пленки можно использовать неоднократно. Методика отличается быстротой, экономичностью, не требует затемненного помещения. Кроме того, селеновые пластины в незаряженном состоянии индифферентны к воздействию ионизирующих излучений и могут быть использованы при работе в условиях повышенного радиационного фона (рентгеновская пленка в этих условиях придет в негодность).

В целом электрорентгенография по своей информативности лишь ненамного уступает пленочной рентгенографии, превосходя ее при исследовании костей (рис. 2.9).

Линейная томография - методика послойного рентгенологического исследования.

Рис. 2.9. Электрорентгенограмма голеностопного сустава в прямой проекции. Перелом малоберцовой кости

Как уже упоминалось, на рентгенограмме видно суммационное изображение всей толщи исследуемой части тела. Томография служит для получения изолированного изображения структур, расположенных в одной плоскости, как бы расчленяя сумма-ционное изображение на отдельные слои.

Эффект томографии достигается благодаря непрерывному движению во время съемки двух или трех компонентов рентгеновской системы: рентгеновская трубка (излучатель) - пациент - приемник изображения. Чаще всего перемещаются излучатель и приемник изображения, а пациент неподвижен. Излучатель и приемник изображения движутся по дуге, прямой линии или более сложной траектории, но обязательно в противоположных направлениях. При таком перемещении изображение большинства деталей на томограмме оказывается размазанным, расплывчатым, нечетким, а образования, находящиеся на уровне центра вращения системы излучатель - приемник, отображаются наиболее четко (рис. 2.10).

Особое преимущество перед рентгенографией линейная томография приобретает

тогда, когда исследуются органы со сформированными в них плотными патологическими зонами, полностью затеняющими те или иные участки изображения. В ряде случаев она помогает определить характер патологического процесса, уточнить его локализацию и распространенность, выявить мелкие патологические очаги и полости (см. рис. 2.11).

Конструктивно томографы выполняют в виде дополнительного штатива, который может автоматически передвигать рентгеновскую трубку по дуге. При изменении уровня центра вращения излучатель - приемник изменится глубина получаемого среза. Толщина изучаемого слоя тем меньше, чем больше амплитуда движения упомянутой выше системы. Если же выбирают очень

малый угол перемещения (3-5°), то получают изображение толстого слоя. Эта разновидность линейной томографии получила название - зонография.

Линейная томография применяется достаточно широко, особенно в лечебных учреждениях, не имеющих компьютерных томографов. Наиболее часто показанием к выполнению томографии служат заболевания легких и средостения.

СПЕЦИАЛЬНЫЕ МЕТОДИКИ

РЕНТГЕНОЛОГИЧЕСКОГО

ИССЛЕДОВАНИЯ

Ортопантомография - это вариант зо-нографии, позволяющий получитьразвер-нутое плоскостное изображение челюстей (см. рис. 2.12). Отдельное изображение каждого зуба при этом достигается путем их последовательной съемки узким пуч-

Рис. 2.10. Схема получения томографического изображения: а - исследуемый объект; б - томографический слой; 1-3 - последовательные положения рентгеновской трубки и приемника излучения в процессе исследованиям

ком рентгеновских лучей на отдельные участки пленки. Условия для этого создаются синхронным круговым движением вокруг головы пациента рентгеновской трубки и приемника изображения, установленных на противоположных концах поворотного штатива аппарата. Методика позволяет исследовать и другие отделы лицевого скелета (околоносовые пазухи, глазницы).

Маммография - рентгенологическое исследование молочной железы. Оно выполняется для изучения структуры молочной железы при обнаружении в ней уплотнений, а также с профилактической целью. Молочная желе-

за является мягкотканным органом, поэтому для изучения ее структуры необходимо использовать очень небольшие величины анодного напряжения. Существуют специальные рентгеновские аппараты - маммографы, где устанавливаются рентгеновские трубки с фокусным пятном размером в доли миллиметра. Они оборудованы специальными штативами для укладки молочной железы с устройством для ее компрессии. Это позволяет уменьшить толщину тканей железы во время исследования, повышая тем самым качество маммограмм (см. рис. 2.13).

Методики с применением искусственного контрастирования

Для того чтобы невидимые на обычных снимках органы были отображены на рентгенограммах, прибегают к методике искусственного контрастирования. Методика заключается во введении в организм веществ,

Рис. 2.11. Линейная томограмма правого легкого. В верхушке легкого определяется крупная воздушная полость с толстыми стенками

которые поглощают (или, наоборот, пропускают) излучение гораздо сильнее (или слабее), чем исследуемый орган.

Рис. 2.12. Ортопантомограмма

В качестве контрастных веществ используют вещества либо с низкой относительной плотностью (воздух, кислород, углекислый газ, закись азота), либо с большой атомной массой (взвеси или растворы солей тяжелых металлов и галогениды). Первые поглощают рентгеновское излучение в меньшей степени, чем анатомические структуры (негативные), вторые - в большей (позитивные). Если, например, ввести воздух в брюшную полость (искусственный пневмоперитонеум), то на его фоне отчетливо выделяются очертания печени, селезенки, желчного пузыря, желудка.

Рис. 2.13. Рентгенограммы молочной железы в краниокаудальной (а) и косой (б) проекциях

Для исследования полостей органов обычно применяют высокоатомные контрастные вещества, наиболее часто - водную взвесь бария сульфата и соединения йода. Эти вещества, в значительной мере задерживая рентгеновское излучение, дают на снимках интенсивную тень, по которой можно судить о положении органа, форме и величине его полости, очертаниях его внутренней поверхности.

Различают два способа искусственного контрастирования с помощью высокоатомных веществ. Первый заключается в непосредственном введении контрастного вещества в полость органа - пищевода, желудка, кишечника, бронхов, кровеносных или лимфатических сосудов, мочевыводящих путей, полостных систем почек, матки, слюнных протоков, свищевых ходов, лик-ворных пространств головного и спинного мозга и т. д.

Второй способ основан на специфической способности отдельных органов концентрировать те или иные контрастные вещества. Например, печень, желчный пузырь и почки концентрируют и выделяют некоторые введенные в организм соединения йода. После введения пациенту таких веществ на снимках через определенное время различаются желчные протоки, желчный пузырь, полостные системы почек, мочеточники, мочевой пузырь.

Методика искусственного контрастирования в настоящее время является ведущей при рентгенологическом исследовании большинства внутренних органов.

В рентгенологической практике используют 3 вида рентгеноконтрастных средств (РКС): йодсодержащие растворимые, газообразные, водную взвесь сульфата бария. Основным средством для исследования желудочно-кишечного тракта является водная взвесь сульфата бария. Для исследования кровеносных сосудов, полостей сердца, мочевыводящих путей применяют водорастворимые йодсодержащие вещества, которые вводят либо внутрисо-судисто, либо в полость органов. Газы в качестве контрастных веществ в настоящее время почти не применяются.

При выборе контрастных веществ для проведения исследований РКС необходимо оценивать с позиций выраженности контрастирующего эффекта и безвредности.

Безвредность РКС помимо обязательной биологической и химической инертности зависит от их физических характеристик, из которых наиболее существенными являются осмолярность и электрическая активность. Ос-молярность определяется числом ионов или молекул РКС в растворе. Относительно плазмы крови, осмолярность которой равна 280 мОсм /кг Н 2 О, контрастные вещества могут быть высокоосмолярными (более 1200 мОсм/кг Н 2 О), низкоосмолярными (менее 1200 мОсм/кг Н 2 О) или изоосмолярными (по осмолярности равными крови).

Высокая осмолярность отрицательно воздействует на эндотелий, эритроциты, клеточные мембраны, протеины, поэтому следует отдавать предпочтение низкоосмолярным РКС. Оптимальны РКС, изоосмолярные с кровью. Следует помнить, что осмолярность РКС как ниже, так и выше осмолярности крови делает эти средства неблагоприятно воздействующими на клетки крови.

По показателям электрической активности рентгеноконтрастные препараты подразделяются на: ионные, распадающиеся в воде на электрически заряженные частицы, и неионные, электрически нейтральные. Осмолярность ионных растворов в силу большего содержания в них частиц вдвое больше, чем неионные.

Неионные контрастные вещества по сравнению с ионными обладают рядом преимуществ: значительно меньшей (в 3-5 раз) общей токсичностью, дают значительно менее выраженный вазодилатационный эффект, обусловливают

меньшую деформацию эритроцитов и гораздо меньше высвобождают гис-тамин, активизируют систему комплемента, ингибируют активность холи-нэстеразы, что снижает риск негативных побочных действий.

Таким образом, неионные РКС дают наибольшие гарантии в отношении как безопасности, так и качества контрастирования.

Широкое внедрение контрастирования различных органов указанными препаратами обусловило появление многочисленных методик рентгенологического исследования, значительно повышающих диагностические возможности рентгенологического метода.

Диагностический пневмоторакс - рентгенологическое исследование органов дыхания после введения газа в плевральную полость. Выполняется с целью уточнения локализации патологических образований, расположенных на границе легкого с соседними органами. С появлением метода КТ применяется редко.

Пневмомедиастинография - рентгенологическое исследование средостения после введения газа в его клетчатку. Выполняется с целью уточнения локализации выявленных на снимках патологических образований (опухолей, кист) и их распространения на соседние органы. С появлением метода КТ практически не применяется.

Диагностический пневмоперитонеум - рентгенологическое исследование диафрагмы и органов полости живота после введения газа в полость брюшины. Выполняется с целью уточнения локализации патологических образований, выявленных на снимках на фоне диафрагмы.

Пневморетроперитонеум - методика рентгенологического исследования органов, расположенных в забрюшинной клетчатке, путем введения в забрюшин-ную клетчатку газа с целью лучшей визуализации их контуров. С внедрением в клиническую практику УЗИ, КТ и МРТ практически не применяется.

Пневморен - рентгенологическое исследование почки и рядом расположенного надпочечника после введения газа в околопочечную клетчатку. В настоящее время выполняется крайне редко.

Пневмопиелография - исследование полостной системы почки после заполнения ее газом через мочеточниковый катетер. В настоящее время используется преимущественно в специализированных стационарах для выявления внутрилоханочных опухолей.

Пневмомиелография - рентгенологическое исследование подпаутинного пространства спинного мозга после его контрастирования газом. Используется для диагностики патологических процессов в области позвоночного канала, вызывающих сужение его просвета (грыжи межпозвоночных дисков, опухоли). Применяется редко.

Пневмоэнцефалография - рентгенологическое исследование ликворных пространств головного мозга после их контрастирования газом. После внедрения в клиническую практику КТ и МРТ выполняется редко.

Пневмоартрография - рентгенологическое исследование крупных суставов после введения в их полость газа. Позволяет изучить суставную полость, выявить в ней внутрисуставные тела, обнаружить признаки повреждения менисков коленного сустава. Иногда ее дополняют введением в полость сустава

водорастворимого РКС. Достаточно широко используется в лечебных учреждениях при невозможности выполнения МРТ.

Бронхография - методика рентгенологического исследования бронхов после их искусственного контрастирования РКС. Позволяет выявить различные патологические изменения бронхов. Широко используется в лечебных учреждениях при недоступности КТ.

Плеврография - рентгенологическое исследование плевральной полости после ее частичного заполнения контрастным препаратом с целью уточнения формы и размеров плевральных осумкований.

Синография - рентгенологическое исследование околоносовых пазух после их заполнения РКС. Применяется тогда, когда возникают затруднения в интерпретации причины затенения пазух на рентгенограммах.

Дакриоцистография - рентгенологическое исследование слезных путей после их заполнения РКС. Применяется с целью изучения морфологического состояния слезного мешка и проходимости слезноносового канала.

Сиалография - рентгенологическое исследование протоков слюнных желез после их заполнения РКС. Применяется для оценки состояния протоков слюнных желез.

Рентгеноскопия пищевода, желудка и двенадцатиперстной кишки - проводится после их постепенного заполнения взвесью бария сульфата, а при необходимости - и воздухом. Обязательно включает в себя полипозиционную рентгеноскопию и выполнение обзорных и прицельных рентгенограмм. Широко применяется в лечебных учреждениях для выявления различных заболеваний пищевода, желудка и двенадцатиперстной кишки (воспалительно-деструктивные изменения, опухоли и др.) (см. рис. 2.14).

Энтерография - рентгенологическое исследование тонкой кишки после заполнения ее петель взвесью бария сульфата. Позволяет получить информацию о морфологическом и функциональном состоянии тонкой кишки (см. рис. 2.15).

Ирригоскопия - рентгенологическое исследование толстой кишки после ретроградного контрастирования ее просвета взвесью бария сульфата и воздухом. Широко применяется для диагностики многих заболеваний толстой кишки (опухоли, хронический колит и т. д.) (см. рис. 2.16).

Холецистография - рентгенологическое исследование желчного пузыря после накопления в нем контрастного вещества, принятого внутрь и выделенного с желчью.

Выделительная холеграфия - рентгенологическое исследование желчных путей, контрастированных с помощью йодсодержащих препаратов, вводимых внутривенно и выделяемых с желчью.

Холангиография - рентгенологическое исследование желчных протоков после введения РКС в их просвет. Широко используется для уточнения морфологического состояния желчных протоков и выявления в них конкрементов. Может выполняться во время оперативного вмешательства (ин-траоперационная холангиография) и в послеоперационном периоде (через дренажную трубку) (см. рис. 2.17).

Ретроградная холангиопанкреатикография - рентгенологическое исследование желчных протоков и протока поджелудочной железы после введения

в их просвет контрастного препарата под рентгеноэндоскопическим контролем (см. рис. 2.18).

Рис. 2.14. Рентгенограмма желудка, контрастированного взвесью бария сульфата. Норма

Рис. 2.16. Ирригограмма. Рак слепой кишки. Просвет слепой кишки резко сужен, контуры пораженного участка неровные (на снимке указано стрелками)

Рис. 2.15. Рентгенограмма тонкой кишки, контрастированной взвесью бария сульфата (энтерограмма). Норма

Рис. 2.17. Антеградная холангиограм-ма. Норма

Экскреторная урография - рентгенологическое исследование мочевых органов после внутривенного введения РКС и выделения его почками. Широко распространенная методика исследования, позволяющая изучать морфологическое и функциональное состояние почек, мочеточников и мочевого пузыря (см. рис. 2.19).

Ретроградная уретеропиелография - рентгенологическое исследование мочеточников и полостных систем почек после заполнения их РКС через мочеточниковый катетер. По сравнению с выделительной урографией позволяет получить более полную информацию о состоянии мочевых путей

в результате их лучшего заполнения контрастным препаратом, вводимым под небольшим давлением. Широко применяется в специализированных урологических отделениях.

Рис. 2.18. Ретроградная холангиопан-креатикограмма. Норма

Рис. 2.19. Экскреторная урограмма. Норма

Цистография - рентгенологическое исследование мочевого пузыря, заполненного РКС (см. рис. 2.20).

Уретрография - рентгенологическое исследование мочеиспускательного канала после его заполнения РКС. Позволяет получить информацию о проходимости и морфологическом состоянии уретры, выявить ее повреждения, стриктуры и т. д. Применяется в специализированных урологических отделениях.

Гистеросальпингография - рентгенологическое исследование матки и маточных труб после заполнения их просвета РКС. Широко используется в первую очередь для оценки проходимости маточных труб.

Позитивная миелография - рентгенологическое исследование под-паутинных пространств спинного

Рис. 2.20. Нисходящая цистограмма. Норма

мозга после введения водорастворимых РКС. С появлением МРТ применяется редко.

Аортография - рентгенологическое исследование аорты после введения в ее просвет РКС.

Артериография - рентгенологическое исследование артерий с помощью введенных в их просвет РКС, распространяющихся по току крови. Некоторые частные методики артериографии (коронарография, каротидная ангиография), будучи высокоинформативными, в то же время технически сложны и небезопасны для пациента, в связи с чем применяются только в специализированных отделениях (рис. 2.21).

Рис. 2.21. Каротидные ангиограммы в прямой (а) и боковой (б) проекциях. Норма

Кардиография - рентгенологическое исследование полостей сердца после введения в них РКС. В настоящее время находит ограниченное применение в специализированных кардиохирургических стационарах.

Ангиопульмонография - рентгенологическое исследование легочной артерии и ее ветвей после введения в них РКС. Несмотря на высокую информативность, небезопасна для пациента, в связи с чем в последние годы предпочтение отдается компьютерно-томографической ангиографии.

Флебография - рентгенологическое исследование вен после введения в их просвет РКС.

Лимфография - рентгенологическое исследование лимфатических путей после введения в лимфатическое русло РКС.

Фистулография - рентгенологическое исследование свищевых ходов после их заполнения РКС.

Вульнерография - рентгенологическое исследование раневого канала после заполнения его РКС. Чаще применяется при слепых ранениях живота, когда другие методы исследования не позволяют установить, является ранение проникающим или непроникающим.

Кистография - контрастное рентгенологическое исследование кист различных органов с целью уточнения формы и размеров кисты, ее топографического расположения и состояния внутренней поверхности.

Дуктография - контрастное рентгенологическое исследование млечных протоков. Позволяет оценить морфологическое состояние протоков и выявить небольшие опухоли молочной железы с внутрипротоковым ростом, неразличимые на маммограммах.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ РЕНТГЕНОЛОГИЧЕСКОГО МЕТОДА

Голова

1. Аномалии и пороки развития костных структур головы.

2. Травма головы:

Диагностика переломов костей мозгового и лицевого отделов черепа;

Выявление инородных тел головы.

3. Опухоли головного мозга:

Диагностика патологических обызвествлений, характерных для опухолей;

Выявление сосудистой сети опухоли;

Диагностика вторичных гипертензионно-гидроцефальных изменений.

4. Заболевания сосудов головного мозга:

Диагностика аневризм и сосудистых мальформаций (артериальные аневризмы, артерио-венозные мальформации, артерио-синусные соустья и др.);

Диагностика стенозирующих и окклюзирующих заболеваний сосудов головного мозга и шеи (стенозы, тромбозы и др.).

5. Заболевания ЛОР-органов и органа зрения:

Диагностика опухолевых и неопухолевых заболеваний.

6. Заболевания височной кости:

Диагностика острых и хронических мастоидитов.

Грудь

1. Травма груди:

Диагностика повреждений грудной клетки;

Выявление жидкости, воздуха или крови в плевральной полости (пнев-мо-, гемоторакс);

Выявление ушибов легких;

Выявление инородных тел.

2. Опухоли легких и средостения:

Диагностика и дифференциальная диагностика доброкачественных и злокачественных опухолей;

Оценка состояния регионарных лимфатических узлов.

3. Туберкулез:

Диагностика различных форм туберкулеза;

Оценка состояния внутригрудных лимфатических узлов;

Дифференциальная диагностика с другими заболеваниями;

Оценка эффективности лечения.

4. Заболевания плевры, легких и средостения:

Диагностика всех форм пневмоний;

Диагностика плевритов, медиастинитов;

Диагностика тромбоэмболии легочной артерии;

Диагностика отека легких;

5. Исследование сердца и аорты:

Диагностика приобретенных и врожденных пороков сердца и аорты;

Диагностика повреждений сердца при травме груди и аорты;

Диагностика различных форм перикардитов;

Оценка состояния коронарного кровотока (коронарография);

Диагностика аневризм аорты.

Живот

1. Травма живота:

Выявление свободного газа и жидкости в полости живота;

Выявление инородных тел;

Установление проникающего характера ранения живота.

2. Исследование пищевода:

Диагностика опухолей;

Выявление инородных тел.

3. Исследование желудка:

Диагностика воспалительных заболеваний;

Диагностика язвенной болезни;

Диагностика опухолей;

Выявление инородных тел.

4. Исследование кишечника:

Диагностика кишечной непроходимости;

Диагностика опухолей;

Диагностика воспалительных заболеваний.

5. Исследование мочевых органов:

Определение аномалий и вариантов развития;

Мочекаменная болезнь;

Выявление стенотических и окклюзионных заболеваний почечных артерий (ангиография);

Диагностика стенотических заболеваний мочеточников, уретры;

Диагностика опухолей;

Выявление инородных тел;

Оценка экскреторной функции почек;

Контроль эффективности проводимого лечения.

Таз

1. Травма:

Диагностика переломов костей таза;

Диагностика разрывов мочевого пузыря, задней уретры и прямой кишки.

2. Врожденные и приобретенные деформации костей таза.

3. Первичные и вторичные опухоли костей таза и тазовых органов.

4. Сакроилеит.

5. Заболевания женских половых органов:

Оценка проходимости маточных труб.

Позвоночник

1. Аномалии и пороки развития позвоночника.

2. Травма позвоночника и спинного мозга:

Диагностика различных видов переломов и вывихов позвонков.

3. Врожденные и приобретенные деформации позвоночника.

4. Опухоли позвоночника и спинного мозга:

Диагностика первичных и метастатических опухолей костных структур позвоночника;

Диагностика экстрамедуллярных опухолей спинного мозга.

5. Дегенеративно-дистрофические изменения:

Диагностика спондилеза, спондилоартроза и остеохондроза и их осложнений;

Диагностика грыж межпозвоночных дисков;

Диагностика функциональной нестабильности и функционального блока позвонков.

6. Воспалительные заболевания позвоночника (специфические и неспецифические спондилиты).

7. Остеохондропатии, фиброзные остеодистрофии.

8. Денситометрия при системном остеопорозе.

Конечности

1. Травмы:

Диагностика переломов и вывихов конечностей;

Контроль эффективности проводимого лечения.

2. Врожденные и приобретенные деформации конечностей.

3. Остеохондропатии, фиброзные остеодистрофии; врожденные системные заболевания скелета.

4. Диагностика опухолей костей и мягких тканей конечностей.

5. Воспалительные заболевания костей и суставов.

6. Дегенеративно-дистрофические заболевания суставов.

7. Хронические заболевания суставов.

8. Стенозирующие и окклюзирующие заболевания сосудов конечностей.

РЕНТГЕНОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Наименование параметра Значение
Тема статьи: РЕНТГЕНОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
Рубрика (тематическая категория) Радио

В диагностике болезней почек и мочевых путей рентгенологические методы играют ключевую роль. Οʜᴎ широко применяются в клинической практике, вместе с тем некоторые из них в связи с внедрением более информативных методов диагностики в настоящее время утратили свое значение (рентгеновская томография, пневморен, пресакральный пневморетроперитонеум, пневмоперицистография, простатография).

Качество рентгенологического исследования во многом зависит от правильной подготовки пациента. Для этого накануне процедуры из рациона обследуемого исключают продукты, способствующие газообразованию (углеводы, овощи, молочные продукты), проводят очистительную клизму. В случае если клизма невозможна, назначают слабительные средства (касторовое масло, форт-ранс), а также препараты, уменьшающие газообразование (активированный уголь, симетикон). Во избежание накопления ʼʼголодныхʼʼ газов утром перед исследованием рекомендуется легкий завтрак (к примеру, чай с небольшим количеством белого хлеба).

Обзорный снимок. Рентгенологическое обследование урологического больного всœегда следует начинать с обзорного снимка почек и мочевыводящих путей. Обзорный снимок мочевых путей должен охватывать область расположения всœех органов мочевой системы (рис. 4.24). Обычно используется рентгеновская пленка размерами 30 х 40 см.

Рис. 4.24. Обзорная рентгенограмма почек и мочевых путей в норме

При интерпретации рентгенограммы, прежде всœего, изучают состояние костного скелœета: нижних грудных и поясничных позвонков, ребер и костей таза. Оценивают контуры m. psoas, исчезновение или изменение которых может свидетельствовать о патологическом процессе в забрюшинном пространстве. Недостаточная видимость объектов забрюшинного пространства должна быть обусловлена метеоризмом, то есть скоплением кишечных газов.

При хорошей подготовке больного на обзорном снимке можно увидеть тени почек, которые располагаются: справа - от верхнего края I поясничного позвонка до тела III поясничного позвонка, слева - от тела XII грудного до тела II поясничного позвонка. В норме их контуры ровные, а тени гомогенные. Изменение размеров, формы, расположения и контуров позволяет заподозрить аномалию или заболевание почек. Мочеточники на обзорной рентгенограмме не видны.

Мочевой пузырь при тугом наполнении концентрированной мочой может определиться в виде округлой тени в проекции тазового кольца.

Камни почек и мочевых путей визуализируются на обзорном снимке в виде рентгеноконтрастных теней (рис. 4.25). Оценивают их локализацию, размеры, форму, количество, плотность. Симулировать конкременты в мочевых путях могут обызвествленные стенки аневризматически расширенных сосудов, атеросклеротические бляшки, камни желчного пузыря, каловые камни, обызвествленные туберкулезные каверны, фиброматозные и лимфатические узлы, а также флеболиты - венные кальцифицированные отложения, имеющие округлую форму и просветление в центре.

Рис. 4.25. Обзорная рентгенограмма почек и мочевыводящих путей. Камни левой почки (стрелка)

Только по обзорной рентгенограмме нельзя с точностью судить о наличии уролитиаза, однако любая тень в проекции почек и мочевыводящих путей должна трактоваться как подозрительная на конкремент, пока с помощью рентгеноконтрастных методов исследования диагноз не будет исключен или подтвержден.

Экскреторная урография - один из ведущих методов исследования в урологии, основанный на способности почек выделять рентгеноконтрастное вещество. Данный метод позволяет оценить функциональное и анатомическое состояние почек, лоханок, мочеточников и мочевого пузыря (рис. 4.26). Обязательным условием для выполнения экскреторной урографии является достаточная функция почек. Для исследования применяют рентгеноконтрастные препараты, содержащие йод (урографин, уротраст и др.). Существуют также современные препараты с низкой осмолярностью (омнипак). Расчет дозы контрастного вещества производится с учетом массы тела, возраста и состояния больного, наличия сопутствующих заболеваний. При удовлетворительной функции почек внутривенно обычно вводят 20 мл контрастного вещества. При крайне важно сти исследование проводят с 40 или 60 мл контраста.

Рис. 4.26. Экскреторная урограмма в норме

После внутривенного введения рентгеноконтрастного вещества, через 1 мин, на рентгенограмме выявляется изображение функционирующей почечной паренхимы (фаза нефрограммы). Через 3 мин контраст определяется в мочевых путях (фаза пиелограммы). Обычно производятся несколько снимков на 7, 15, 25, 40-й минуте, позволяющих оценить состояние верхних мочевых путей. При отсутствии выделœения контрастного вещества почкой делают отсроченные снимки, которые бывают выполнены через 1-2 часа. При заполнении контрастом мочевого пузыря получают его изображение (нисходящая цистограмма).

При интерпретации урограмм обращают внимание на размеры, форму, положение почек, своевременность выделœения контрастного вещества, анатомическое строение чашечно-лоханочной системы, наличие дефектов наполнения и препятствий для пассажа мочи. Следует оценивать насыщенность тени контрастного вещества в мочевыводящих путях, время появления его в мочеточниках и мочевом пузыре. При этом ранее видимая на обзорном снимке тень конкремента может отсутствовать.

На экскреторной урограмме тень рентгенопозитивного камня пропадает вследствие наслоения ее на рентгеноконтрастное вещество. Она появляется на поздних снимках по мере оттока контраста и импрегнации им конкремента. Рентгенонегативный камень создает дефект наполнения контрастного вещества.

При отсутствии на рентгенограмме теней контрастного вещества можно предположить врожденное отсутствие почки, блок почки камнем при почечной колике, гидронефротическую трансформацию и другие заболевания, сопровождающиеся угнетением почечной функции.

Нежелательные реакции и осложнения при внутривенном введении рентеноконтрастных препаратов чаще наблюдаются при использовании гиперосмолярных рентгеноконтрастных веществ, реже - низкоосмолярных. Для профилактики подобных осложнений следует тщательно узнать аллергологический анамнез и с целью проверки чувствительности организма к йоду ввести внутривенно 1-2 мл контрастного вещества, а затем, не удаляя иглу из вены, при удовлетворительном состоянии пациента через 2-3-минутный интервал медленно ввести весь объём препарата.

Введение контрастного вещества должно производиться медленно (в течение 2 мин) в присутствии врача. При возникновении побочных явлений следует тут же медленно ввести в вену 10-20 мл 30% раствора тиосульфата натрия. Незначительными побочными эффектами бывают тошнота͵ рвота͵ головокружение. Гораздо опаснее аллергические реакции на контрастные вещества (крапивница, бронхоспазм, анафилактический шок), которые развиваются примерно в 5 % случаев. При крайне важно сти проведения экскреторной урографии у больных с аллергическими реакциями на гиперосмолярные контрастные препараты применяют только низкоосмолярные вещества и предварительно проводят премедикацию глюкокортикоидами и антигистаминными препаратами.

Противопоказаниями к проведению экскреторной урографии являются шок, коллапс, тяжелые заболевания печени и почек с выраженной азотемией, гипертиреоидизм, сахарный диабет, гипертоническая болезнь в стадии декомпенсации и беременность.

Ретроградная (восходящая) уретеропиелография. Данное исследование основано на заполнении мочеточника, лоханки и чашечек рентгеноконтрастным веществом путем ретроградного введения его через предварительно установленный в мочеточник катетер.
Размещено на реф.рф
Для этой цели используют жидкие контрастные вещества (урографин, омнипак). Газообразные контрасты (кислород, воздух) в настоящее время применяют крайне редко.

Сегодня показания к проведению данного исследования значительно сузились в связи с появлением более информативных и менее инвазивных методов диагностики, таких как сонография, компьютерная томография (КТ) и магнитно-резонансная томография (МРТ).

Ретроградная уретеропиелография (рис. 4.27) используется в случаях, когда экскреторная урография не дает отчетливого изображения верхних мочевыводящих путей или невыполнима из-за выраженной азотемии, аллергических реакций на контрастное вещество. К проведению данного исследования прибегают при сужениях мочеточников различного генеза, туберкулезе, опухолях верхних мочевых путей, рентгенонегативных камнях, аномалиях мочевой системы, а также при крайне важно сти визуализации культи мочеточника удаленной почки. Для выявления рентгенонегативных камней используются растворы контрастного вещества низкой концентрации или пневмопиелография.

Рис. 4.27. Ретроградная уретеропиелограмма слева

Осложнениями ретроградной уретеропиелографии являются развитие пиелоренального рефлюкса, сопровождающегося лихорадкой, ознобом, болью в поясничной области; обострение пиелонефрита; перфорация мочеточника.

Антеградная (нисходящая) пиелоуретерография - метод исследования, основанный на визуализации верхних мочевых путей путем введения контрастного вещества в почечную лоханку с помощью чрескожной пункции либо по нефростомическому дренажу (рис. 4.28).

Ретроградная уретеропиелография противопоказана при массивной гематурии, активном воспалительном процессе в мочеполовых органах, невозможности выполнения цистоскопии.

Проведение ретроградной уретеропиелографии начинается с цистоскопии, после чего в устье соответствующего мочеточника вводят катетер на высоту 20-25 см (или при крайне важно сти в лоханку). Далее делают обзорный снимок мочевых путей для контроля расположения катетера. Медленно вводят рентгеноконтрастное вещество (обычно не более 3-5 мл) и выполняют снимки. Во избежание инфекционных осложнений не следует производить ретроградную уретеропиелографию одновременно с двух сторон.

Антеградная чрескожная пиелоуретерография показана больным с обструкцией мочеточников различного генеза (стриктура, камень, опухоль и др.), когда другие методы диагностики не позволяют установить правильный диагноз. Исследование помогает определить характер и уровень непроходимости мочеточников.

Антеградную пиелоуретерографию используют для оценки состояния верхних мочевыводящих путей у больных с нефростомой в послеоперационном периоде, особенно после пластических операций на лоханке и мочеточнике.

Противопоказаниями к выполнению антеградной чрескожой пиелоуретерографии являются: инфекции кожи и мягких тканей в поясничной области, а также состояния, сопровождающиеся нарушением свертываемости крови.

Рис. 4.28. Антеградная пиелоуретерограмма слева. Стриктура тазового отдела мочеточника

Цистография - метод рентгенологического исследования мочевого пузыря путем предварительного наполнения его контрастным веществом. Цистография должна быть нисходящей (во время экскреторной урографии) и восходящей (ретроградной), которая, в свою очередь, подразделяется на статическую и микционную (во время мочеиспускания).

Нисходящая цистография - это стандартное рентгенологическое исследование мочевого пузыря в процессе выполнения экскреторной урографии (рис. 4.29).

Целœенаправленно она применяется для получения информации о состоянии мочевого пузыря при невозможности его катетеризации из-за непроходимости уретры. При нормальной функции почек отчетливая тень мочевого пузыря появляется через 30-40 мин после введения в кровоток контрастного вещества. В случае если контрастирование недостаточное, производят более поздние снимки, через 60-90 мин.

Рис. 4.29. Экскреторная урограмма с нисходящей цистограммой в норме

Ретроградная цистография - метод рентгеноидентификации мочевого пузыря путем введения в его полость жидких или газообразных (пневмоцистограмма) контрастных веществ по установленному по уретре катетеру (рис. 4.30). Исследование производится в положении больного на спинœе при отведенных и согнутых в тазобедренных суставах бедрах. С помощью катетера в мочевой пузырь вводится 200-250 мл контрастного вещества, после чего выполняется рентгеновский снимок. Нормальный, мочевой пузырь при достаточном наполнении имеет округлую (преимущественно у мужчин) или овальную (у женщин) форму и четкие ровные контуры. Нижний край его тени располагается на уровне верхней границы симфиза, а верхний - на уровне III-IV крестцовых позвонков. У детей мочевой пузырь расположен выше над симфизом, чем у взрослых.

Рис. 4.30. Ретроградная цистограмма в норме

Цистография - основной метод диагностики проникающих разрывов мочевого пузыря, позволяющий определить затеки рентгеноконтрастного вещества за пределы органа (см. гл. 15.3, рис. 15.9). С ее помощью можно также диагностировать цистоцелœе, мочепузырные свищи, опухоли и камни мочевого пузыря. У больных с доброкачественной гиперплазией предстательной желœезы на цистограмме может отчетливо определяться обусловленный ею округлый дефект наполнения по нижнему контуру мочевого пузыря (рис. 4.31). Дивертикулы мочевого пузыря выявляются на цистограмме в виде мешкообразных выпячиваний его стенки.

Рис. 4.31. Экскреторная урограмма с нисходящей цистограммой. Определяется большой округлый дефект наполнения по нижнему контуру мочевого пузыря, обусловленный доброкачественной гиперплазией предстательной желœезы (стрелка)

Противопоказаниями к проведению ретроградной цистографии являются острые воспалительные заболевания нижних мочевых путей, предстательной желœезы и органов мошонки. У больных с травматическим повреждением мочевого пузыря предварительно убеждаются в целостности мочеиспускательного канала путем уретрографии.

Большинство предложенных ранее модификаций цистографий в связи с появлением более информативных методов исследования в настоящее время утратили свое значение. Проверку временем выдержала только микционная цистография (рис. 4.32) - рентгенография, выполняемая во время освобождения мочевого пузыря от контрастного вещества, то есть в момент мочеиспускания. Микционная цистография широко применяется в детской урологии для выявления пузырно-мочеточникового рефлюкса. Также к данному исследованию прибегают при крайне важно сти визуализировать задние отделы мочеиспускательного канала (антеградная уретрография) у больных со стриктурами и клапанами уретры, эктопией устья мочеточника в уретру.


Рис. 4.32. Микционная цистограмма. В момент мочеиспускания контрастируется задняя уретра (1), определяется правосторонний пузырно-мочеточниковый рефлюкс (2)

Генитография - рентгенологическое исследование семявыносящих путей посредством их контрастирования. Используется в диагностике заболеваний придатка яичка (эпидидимография) и семенных пузырьков (везикулография), оценке проходимости семявыносящего протока (вазография).

Исследование заключается во введении рентгеноконтрастного вещества в семявьшосящий проток путем его чрескожной пункции или вазотомии. В связи с инвазивностью данного исследования показания к нему строго ограничены. Генитография используется в дифференциальной диагностике туберкулеза, опухолей придатка яичка, семенных пузырьков. Вазография позволяет выявить причину бесплодия, вызванного нарушением проходимости семявыносящих протоков.

Противопоказанием к выполнению данного исследования является активный воспалительный процесс в органах мочеполовой системы.

Уретрография - метод рентгеновского исследования мочеиспускательного канала путем его предварительного контрастирования. Различают нисходящую (антеградную, микционную) и восходящую (ретроградную) уретрографию.

Антеградную уретрографию выполняют в момент мочеиспускания после предварительного заполнения мочевого пузыря рентгеноконтрастным веществом. При этом получается хорошее изображение простатического и мембраноз-ного отделов мочеиспускательного канала, в связи с этим это исследование применяется прежде всœего для диагностики заболеваний данных отделов уретры.

Значительно чаще выполняют ретроградную уретрографию (рис. 4.33). Ее обычно производят в косом положении больного на спинœе: ротированный таз образует с горизонтальной плоскостью стола угол 45°, одна нога согнута в тазобедренном и коленном суставах и поджата к туловищу, вторая вытянута. В таком положении уретра проецируется на мягкие ткани бедра. Половой член вытягивают параллельно согнутому бедру. Контрастное вещество с помощью шприца с резиновым наконечником медленно (во избежание уретровенозного рефлюкса) вводят в уретру. В процессе введения контраста делают рентгеновский снимок.

Рис. 4.33. Ретроградная уретрограмма в норме

Уретрография - основной метод диагностики повреждений и стриктур мочеиспускательного канала. Характерным рентгенологическим признаком проникающего разрыва уретры является распространение контрастного вещества за ее пределы и отсутствие его поступления в вышелœежащие отделы мочеиспускательного канала и мочевой пузырь (см. гл. 15.4, рис. 15.11). Показанием к ней также являются аномалии, новообразования, девертикулы и свищи мочеиспускательного канала. Уретрография противопоказана при остром воспалении нижних мочевых путей и половых органов.

Почечная ангиография - метод исследования почечных сосудов путем их предварительного контрастирования. С развитием и совершенствованием лучевых методов диагностики ангиография в определœенной степени утратила свое прежнее значение, так как визуализация магистральных сосудов и почек с помощью мультиспиральной КТ и МРТ более доступна, информативна и менее инвазивна.

Метод позволяет изучить особенности ангиоархитектоники и функциональную способность почек в тех случаях, когда другими методами исследования сделать это не удается. Показаниями к проведению данного исследования являются гидронефроз (в особенности при подозрении на наличие вызывающих обструкцию мочеточника нижнеполярных почечных сосудов), аномалии строения почек и верхних мочевых путей, туберкулез, опухоли почки, дифференциальная диагностика объёмных образований и кист почек, нефрогенная артериальная гипертензия, опухоли надпочечников и др.

Учитывая зависимость отспособа введения контрастного вещества почечная ангиография производится транслюмбальным (пункция аорты со стороны поясничной области) и трансфеморальным (после пункции бедренной артерии катетер проводится по ней до уровня почечных артерий) доступом по Seldinger. Сегодня транслюмбальная аортография применяется чрезвычайно редко, только в тех случаях, когда пунктировать бедренную артерию и провести катетер по аорте технически невозможно, к примеру при выраженном атеросклерозе.

Повсœеместное распространение получила трансфеморальная аортография и артериография почек (рис. 4.34).


Рис. 4.34. Трансфеморальная почечная артериограмма

При почечной ангиографии выделяют следующие фазы контрастирования органа: артериографическую - контрастирование аорты и почечных артерий; нефрографическую - визуализацию паренхимы почки; венографическую - определяются почечные вены; фазу экскреторной урографии, когда происходит выделœение контрастного вещества в мочевыводящие пути.

Кровоснабжение почки осуществляется по магистральному или по рассыпному типу. Рассыпной тип кровоснабжения характерен тем, что кровь к почке приносят два и более артериальных ствола. Питая соответствующий участок органа, они не имеют анастомозов, в связи с этим каждый из них является для почки основным источником кровоснабжения. У одного пациента могут наблюдаться сразу оба эти вида кровоснабжения.

В ряде случаев заболевания почек характеризуются специфической ангиографической картиной. При гидронефрозе отмечается резкое сужение внутрипочечных артерий и уменьшение их количества. Для кисты почки характерно наличие бессосудистого участка. Новообразования почки сопровождаются нарушением архитектоники почечных сосудов, односторонним увеличением диаметра почечной артерии, скоплением контрастной жидкости в области опухоли.

Получить подробное изображение интересующего участка позволяет метод селœективной почечной артериографии (рис. 4.35). При этом с помощью трансфеморального зондирования аорты, почечной артерии и её ветвей удается получить избирательную ангиограмму одной почки или ее отдельных сегментов.


Рис. 4.35. Селœективная почечная артериограмма в норме

Почечная ангиография - высокоинформативный метод диагностики различных заболеваний почек. Вместе с тем данное исследование является достаточно инвазивным и должно иметь ограниченные и конкретные показания к применению.

Одним из перспективных методов исследования является цифровая субтракционная ангиография - метод контрастного исследования сосудов с последующей компьютерной обработкой. Преимуществом его является возможность получить изображение только объектов, содержащих контрастный препарат. Последний можно вводить внутривенно, не прибегая к катетеризации крупных сосудов, что менее травматично для пациента.

Венография, в том числе почечная, - метод исследования венозных сосудов путем их предварительного контрастирования. Ее выполняют посредством пункции бедренной вены, через которую проводят катетер в нижнюю полую и почечную вены.

Развитие ангиографии способствовало становлению новой отрасли - рентгенэндоваскулярной хирургии.

В урологии наибольшее распространение получили такие ее методики, как эмболизация, баллонная дилатация и стентирование сосудов.

Эмболизация - введение различных веществ для селœективной окклюзии кровеносных сосудов. Применяется для остановки кровотечения у больных с травмой или опухолями почек и в качестве малоинвазивного метода лечения варикоцелœе. Баллонная ангиопластика и стентирование почечных сосудов подразумевают эндоваскулярное введение специального баллона, который затем раздувается и восстанавливает проходимость сосуда. Важно заметить, что для сохранения вновь приданной артерии формы производят установку специального саморасширяющегося сосудистого эндопротеза - стента.

Компьютерная томография. Это один из наиболее информативных методов диагностики. В отличие от обычной рентгенографии КТ позволяет получить снимок поперечного (аксиального) среза человеческого тела с послойным шагом в 1-10 мм.

Метод основан на измерении и компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. При помощи подвижной рентгеновской трубки, движущейся вокруг объекта под углом 360°, осуществляют аксиальное послойное с миллиметровым шагом сканирование тела пациента. Кроме обычной КТ существует спиральная КТ и более совершенная мультиспиральная КТ (рис. 4.36).


Рис. 4.36. Мультиспиральная КТ в норме. Аксиальный срез на уровне почечных ворот

Для улучшения дифференцировки органов друг от друга используются различные методики усиления с применением перорального или внутривенного контрастирования.

При спиральном сканировании одновременно выполняются два действия: вращение источника излучения - рентгеновской трубки и непрерывное движение стола с пациентом вдоль продольной оси. Наилучшее качество изображения обеспечивает мультиспиральная КТ. Преимуществом мультиспирального исследования является большее количество воспринимающих детекторов, что позволяет получить более качественную картину с возможностью трехмерного изображения исследуемого органа при меньшей лучевой нагрузке на пациента (рис. 4.37). Вместе с тем, данный метод позволяет получить мультипланарные, трехмерные и виртуальные эндоскопические изображения мочевыводящих путей.

Рис. 4.37. Мультиспиральная КТ. Мультипланарная реформация во фронтальной проекции. Экскреторная фаза в норме

КТ является одним из ведущих методов диагностики урологических заболеваний; вследствие более высокой информативности и безопасности по сравнению с другими рентгенологическими методами она получила самое широкое распространение во всœем мире.

Мультиспиральная КТ с внутривенным контрастным усилением и трехмерной реконструкцией изображения в настоящее время является одним из самых совершенных методов визуализации в современной урологии (рис. 36, см. цв. вклейку). Показания к выполнению данного метода исследования в последнее время значительно расширились. Это дифференциальная диагностика кист, новообразований почек и надпочечников; оценка состояния сосудистого русла, регионарных и отдаленных метастазов при опухолях мочеполовой системы; туберкулезное поражение; травмы почек; объёмные образования и гнойные процессы забрюшинного пространства; ретроперитонеальный фиброз; мочекаменная болезнь; заболевания мочевого пузыря (опухоли, дивертикулы, конкременты и т. д.) и предстательной желœезы.

Позитронно-эмиссионная томография (ПЭТ) - радионуклидный томографический метод исследования.

В корне его лежит возможность при помощи специального детектирующего оборудования (ПЭТ-сканера) отслеживать распределœение в организме биологически активных соединœений, меченных позитрон-излучающими радиоизотопами. Наибольшее распространение метод получил в онкоурологии. ПЭТ позволяет получить ценную информацию у больных с подозрением на рак почки, мочевого пузыря, предстательной желœезы, опухоли яичка.

Наиболее информативными являются позитронно-эмиссионные томографы, комбинированные с компьютерными томографами, позволяющие одновременно изучать анатомические (КТ) и функциональные (ПЭТ) данные.

РЕНТГЕНОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ - понятие и виды. Классификация и особенности категории "РЕНТГЕНОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ" 2017, 2018.