Называют микроскопические водоросли, свободно «парящие» в толще воды. Для жизни в таком состоянии в процессе эволюции у них выработался ряд приспособлений, которые способствуют уменьшению относительной плотности клеток (накопление включений, образование газовых пузырьков) и увеличению их трения (отростки различной формы, выросты).

Пресноводный фитопланктон представлен в основном зелеными, сине-зелеными, диатомовыми, пирофитовыми, золотистыми и эвгленовыми водорослями.

Развитие фитопланктонных сообществ происходит с определенной периодичностью и зависит от различных факторов. Например, прирост биомассы микроводорослей до определенного момента происходит пропорционально количеству поглощаемого света. Зеленые и сине-зеленые водоросли наиболее интенсивно размножаются при круглосуточном освещении, диатомовые — при более коротком фотопериоде. Начало вегетации фитопланктона в марте-апреле в немалой степени связано с повышением температуры воды. Диатомовым свойственен низкий температурный оптимум, для зеленых и сине-зеленых — более высокий. Поэтому весной и осенью при температуре воды от 4 до 15 в водоемах доминируют диатомовые водоросли. Увеличение мутности воды, вызываемое минеральными взвесями, снижает интенсивность развития фитопланктона, особенно сине-зеленых. Менее чувствительны к повышению мутности воды диатомовые и протококковые водоросли. В воде, богатой нитратами, фосфатами и силикатами, развиваются преимущественно диатомовые, в то же время зеленые и сине-зеленые менее требовательны к содержанию этих биогенных элементов.

На видовой состав и численность фитопланктона оказывают влияние и продукты жизнедеятельности самих водорослей, поэтому между некоторыми из них существуют, как отмечается в научной литературе, антагонистические взаимоотношения.

Из всего многообразия видов пресноводного фитопланктона диатомовые, зеленые и сине-зеленые водоросли — наиболее многочисленны и особенно ценны в кормовом отношении.

Клетки диатомовых водорослей снабжены двустворчатой оболочкой из кремнезема. Их скопления отличаются характерной, желтовато-бурой окраской. Эти микрофиты играют важную роль в питании зоопланктона, но из-за низкого содержания органического вещества их пищевая ценность не столь значительна, как, например, у протококковых водорослей.

Отличительный признак зеленых водорослей — типичная зеленая окраска. Их клетки, содержащие ядро и хроматофор, различны по форме, часто снабжены шипами и щетинками. Некоторые имеют красный глазок (стигма). Из представителей этого отдела протококковые водоросли являются объектами массового культивирования (хлорелла, сценедесмус, анкистродесмус). Их клетки отличаются микроскопическими размерами и легко доступны фильтрующим гидробионтам. Калорийность сухого вещества этих водорослей приближается к 7 ккал/г. В них много жира, углеводов, витаминов.

Клетки сине-зеленых водорослей не имеют хроматофоров и ядер и равномерно окрашены в сине-зеленый цвет. Иногда их окраска может приобретать фиолетовый, розовый и другие оттенки. Калорийность сухого вещества достигает 5,4 ккал/г. Белок полноценен по аминокислотному составу, однако из-за слабой растворимости он малодоступен для рыб.

В создании естественной кормовой базы водоемов фитопланктону принадлежит ключевая роль. Микрофиты как первичные продуценты, усваивая неорганические соединения, синтезируют органические вещества, которые утилизируются зоопланктоном (первичный консумент) и рыбами (вторичный консумент). От соотношения крупных и мелких форм в фитопланктоне в значительной мере зависит и структура зоопланктона.

Один из факторов, лимитирующих развитие микрофитов,- содержание в воде растворимого азота (преимущественно аммонийного) и фосфора. Для прудов оптимальной нормой считают 2 мг N/л и 0,5 мг Р/л. Увеличению биомассы фитопланктона способствует дробное внесение за сезон 1 ц/га азотно-фосфорных, а также органических удобрений.

Продукционные возможности водорослей достаточно велики. Применяя соответствующую технологию, с 1 га водной поверхности можно получать до 100 т сухого вещества хлореллы.

Промышленное культивирование водорослей слагается из ряда последовательных этапов с использованием различного рода реакторов (культиваторов) на жидких средах. Средняя урожайность водорослей, колеблется от 2 до 18,5 г сухого вещества на 1 м2 в сутки.

Мерой продуктивности фитопланктона служит скорость образования органического вещества в процессе фотосинтеза.

Водоросли — основной источник первичной продукции. Первичная продукция — количество органического вещества, синтезируемого эвтрофными организмами за единицу времени,- обычно выражается в ккал/м2 в сутки.

Фитоплактон наиболее точно определяет трофический уровень водоема. К примеру, для олиготрофных и мезотрофных вод характерно низкое отношение численности фитопланктона к его биомассе, а для гипертрофных — высокое. Биомасса фитопланктона в гипертрофных водоемах составляет более 400 мг/л, в эвтрофных — 40,1-400 мг/л, в дистрофных — 0,5-1 мг/л.

Антропогенная эвтрофикация — возросшее насыщение водоема биогенами — одна из злободневных проблем. Определить степень активности биологических процессов в водоеме, как и степень его интоксикации, можно с помощью фитопланктонных организмов — индикаторов сапробности. Различают водоемы поли-, мезо- и олигосапробные.

Повышение эвтрофикации, или чрезмерное накопление в водоеме органического вещества, тесно связано с усилением процессов фотосинтеза в фитопланктоне. Массовое развитие водорослей приводит к ухудшению качества воды, ее «цветению».

Цветение — не стихийное явление, оно подготавливается в течение довольно продолжительного времени, иногда двух и более вегетационных периодов. Предпосылки резкого возрастания численности фитопланктона — наличие водорослей в водоеме и их способность к размножению при благоприятных условиях. Развитие диатомовых, например, в значительной мере зависит от содержания в воде железа, лимитирующим фактором для зеленых водорослей служит азот, сине-зеленых — марганец. Цветение воды считается слабым, если биомасса фитопланктона находится в пределах 0,5-0,9 мг/л, умеренным — 1-9,9 мг/л, интенсивным — 10- 99,9 мг/л, а при гиперцветении она превышает 100 мг/л.

Методы борьбы с этим явлением пока еще не настолько совершенны, чтобы можно было считать проблему окончательно решенной.

В качестве альгицидов (химических средств борьбы с цветением) применяют производные карбамида — диурон и монурон — в дозах 0,1-2 мг/л. Для временной очистки отдельных участков водоемов

вносят сернокислый алюминий. Однако прибегать к ядохимикатам следует с осторожностью, так как они потенциально опасны не только для гидробионтов, но и для человека.

В последние годы в этих целях широко используют растительноядных рыб. Так, белый толстолобик потребляет различные виды протококковых, диатомовых водорослей. Сине-зеленые, продуцирующие при массовом развитии токсические метаболиты, усваиваются им хуже, однако в рационе взрослых особей этой рыбы они могут составлять значительную долю. Фитопланктон охотно поедают также тиляпия, серебряный карась, пестрый толстолобик, а при недостатке основной пищи — сиговые, большеротый буффало, веслонос.

В определенной мере ограничивать интенсивность цветения воды могут и макрофиты. Помимо выделения в воду вредных для фитопланктона веществ, они затеняют поверхность близлежащих участков, препятствуя фотосинтезу.

При расчете кормовой базы водоема и продукции фитопланктона приходится определять видовой состав, численность клеток и биомассу водорослей по содержанию в определенном объеме воды (0,5 или 1 л).

Методика обработки пробы включает в себя несколько этапов (фиксация, концентрирование, приведение к заданному объему). Существует много различных фиксаторов, однако чаще всего употребляется формалин (2-4 мл 40% раствора формалина на 100 мл воды). Клетки водорослей отстаивают в течение двух недель (если объем пробы меньше 1 л, соответственно укорачивается и период осаждения). Затем верхний слой отстоявшейся воды осторожно удаляют, оставляя для дальнейшей работы 30-80 мл.

Клетки фитопланктона подсчитывают небольшими по объему порциями (0,05 или 0,1 мл), затем по полученным результатам определяют их содержание в 1 л. Если численность клеток того или иного вида водорослей превышает 40 % от их общего количества, то данный вид считается доминирующим.

Определение биомассы фитопланктона — трудоемкий и длительный процесс. На практике для облегчения расчета условно принято считать, что масса 1 млн. клеток пресноводного фитопланктона приблизительно равна 1 мг. Есть и другие экспресс-методы. Учитывая большую роль фитопланктона в экосистеме водоемов, в формировании их рыбопродуктивности, необходимо, чтобы этими методами владели все рыбоводы — от ученых до практиков.

Растительная часть планктона, распространенного в слое воды (в Мировом океане составляет в среднем 200 м), получающем солнечную энергию (эвфотическая зона). Фитопланктон основной первичный продуцент органические вещества в водоемах, за счет… … Экологический словарь

фитопланктон - Часть планктона, представленная растениями. [ГОСТ 30813 2002] фитопланктон Одноклеточные водоросли, обитающие в верхнем освещённом слое воды. [Словарь геологических терминов и понятий. Томский Государственный Университет] Тематики водоснабжение и … Справочник технического переводчика

ФИТОПЛАНКТОН - (от фито... и планктон) совокупность микроскопических растений (главным образом водорослей), обитающих в толще морских и пресных вод и пассивно передвигающихся под влиянием водных течений. Источник органических веществ в водоеме пищи для др.… … Большой Энциклопедический словарь

ФИТОПЛАНКТОН - ФИТОПЛАНКТОН, совокупность мелких дрейфующих по течению океанических растений, в противоположность ЗООПЛАНКТОНУ совокупности мелких дрейфующих по течению животных организмов. Большая часть фитопланктона микроскопического размера, например,… … Научно-технический энциклопедический словарь

фитопланктон - сущ., кол во синонимов: 1 микрофитопланктон (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

ФИТОПЛАНКТОН - совокупность водорослей, обитающих в верхнем освещенном слое воды. Ф. образуют одноклеточные водоросли разл. систематической принадлежности золотистые, перидиниевые, диатомовые, синезеленые, разножгутиковые, эвгленовые и др., имеющие ряд… … Геологическая энциклопедия

Фитопланктон - совокупность одноклеточных растений, обитающих в фотическом слое океана. Является основным источником новообразования органического вещества в океане. Затрудняет обнаружение подводных лодок. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

фитопланктон - Совокупность растительных организмов, входящих в состав планктона (диатомовые, зеленые и синезеленые водоросли) … Словарь по географии

ФИТОПЛАНКТОН - свободноплавающие растительные организмы (водоросли), населяющие поверхностные слои воды. Массовое развитие Ф. в прудах придает воде определенную окраску. Ф. является источником первичной продукции (органического вещества) и источником кислорода… … Прудовое рыбоводство

Книги

  • Фитопланктон Нижней Волги Водохранилища и низовье реки , Трифонова И. (ред.). Общепринятой единой системы биологического анализа качества вод не существует. Краткий анализ экологической ситуации в бассейне р. Волги и других рек показывает необходимость проведения… Купить за 151 руб
  • Фитопланктон Нижней Волги. Водохранилище и низовье реки , . В книге представлены лимнологические особенности водохранилищ Нижней Волги - Куйбышевского, Саратовского и Волгоградского, а также физико-географическая характеристика региона в целом. Дано…

На состав и распределение фитопланктона по отдельным водоемам, на его изменение в пределах одного водоема влияет большой комплекс факторов. Первостепенное значение из физических факторов имеют световой режим, температура воды, а для глубоких водоемов - вертикальная устойчивость водных масс. Из химических факторов основное значение имеют соленость воды и содержание в ней питательных веществ, в первую очередь солей фосфора, азота, а для некоторых видов также железа и кремния. Рассмотрим некоторые из перечисленных факторов.

Влияние освещенности как экологического фактора наглядно проявляется в вертикальном и сезонном распределении фитопланктона. В морях и озерах фитопланктон существует лишь в верхнем слое воды. Нижняя граница его в морских, более прозрачных водах находится на глубине 40-70 м и лишь в немногих местах достигает 100--120 м (Средиземное море, тропические воды Мирового океана). В озерных значительно менее прозрачных водах фитопланктон существует обычно в верхних слоях, на глубине 10-15 м, а в водах с очень малой прозрачностью встречается на глубине до 2-3 м. Лишь в высокогорных и некоторых крупных озерах (например, Байкале) с прозрачной водой фитопланктон распространен до глубины 20-30 м. Прозрачность воды в дант ном случае влияет на водоросли не прямо, а косвенно, поскольку она определяет интенсивность проникновения в водную толщу солнечной радиации, без которой невозможен фотосинтез. Это хорошо подтверждает сезонный ход развития фитопланктона в водоемах умеренных и высоких широт, замерзающих в зимний период. Зимой, когда водоем покрыт льдом, часто еще со слоем снега, несмотря на самую высокую в году прозрачность воды, фитопланктон почти отсутствует - встречаются лишь весьма редкие физиологически неактивные клетки некоторых видов, а у отдельных водорослей -- споры или клетки в стадии покоя.

При общей большой зависимости фитопланктона от освещенности оптимальные значения последней у отдельных видов варьируют в довольно широких пределах. Особенно требовательны к этому фактору зеленые водоросли и большинство видов сине-зеленых, в значительном количестве развивающихся в летний сезон. Некоторые виды сине-зеленых в массе развиваются только у самой поверхности воды: осциллатория (Oscillatoria) -в тропических морях, многие виды микроцистиса (Microcystis), анабены(Anabaena) и др. - в мелких внутренних водоемах.

Менее требовательны к условиям освещенности - диатомовые. Большинство из них избегает ярко освещенного приповерхностного слоя воды и более интенсивно развивается лишь на глубине 2-3 м в малопрозрачных водах озер и на глубине 10-15 м в прозрачных водах морей.

Температура воды - важнейший фактор общего географического распределения фитопланктона и сезонных циклов его, но действует этот фактор во многих случаях не прямо, а косвенно. Многие водоросли способны переносить большой диапазон колебаний температуры (эвритермные виды) и встречаются в планктоне разных географических широт и в разные сезоны года. Однако зона температурного оптимума, в пределах которого наблюдается наибольшая продуктивность, для каждого вида обычно ограничена не большими отклонениями температуры. Например, широко распространенная в озерном планктоне умеренной зоны и субарктики диатомея мелозира исландская (Melosira islandica) обычно присутствует в планктоне (например, в Онежском и Ладожском озерах, в Неве) при температуре от +1 до + 13°С, максимальное же размножение ее наблюдается при температуре от +6 до +8 °С.

Температурный оптимум у разных видов не совпадает, чем и определяется смена видового состава по сезонам, так называемая сезонная сукцессия видов. Общая, схема годового цикла фитопланктона в озерах умеренных широт имеет следующий вид. Зимой подо льдом (особенно когда лед покрыт снегом) фитопланктон почти отсутствует в связи с недостатком солнечной радиации. Вегетационный цикл фитопланктона как сообщества начинается в марте - апреле, когда солнечной радиации достаточно для фотосинтеза водорослей даже подо льдом. В это время бывают довольно многочисленными мелкие жгутиковые - криптомонас (Cryptomonas), хромулина (Chromulina), хризококкус (Chrysococcus) -- и начинается повышение численности холодноводных видов диатомовых -- мелозиры (Melosira), диатомы(Diatoma) и др.

Во вторую фазу весны -- с момента вскрытия льда на озере до установления температурной стратификации, что обычно бывает при прогреве верхнего слоя воды до +10, +12 °С, наблюдается бурное развитие холодноводного комплекса диатомовых. В первую фазу летнего сезона, при температуре воды от+10 до + 15 °С, холодноводный комплекс диатомовых прекращает вегетацию, в планктоне в это время еще многочисленны диатомовые, но уже другие виды - умеренно тепловодные: астерионелла (Asterionella), табеллария (Tabellaria). Одновременно повышается продуктивность зеленых и сине-зеленых водорослей, а также хризомонад, часть видов которых достигает значительного развития уже во вторую фазу весны. Во вторую фазу лета, при температуре воды выше + 15 °С, наблюдается максимум продуктивности сине-зеленых и зеленых водорослей. В зависимости от трофического и лимнологического типа водоема в это время может наблюдаться «цветение» воды, вызванное видами сине-зеленых (Anabaena, Aphanizomenon, Microcystis, Gloeotrichia, Oscillatoria) и зеленых водорослей (Scenedesmus, Pediastrum, Oocystis).

Диатомовые летом, как правило, занимают подчиненное положение и представлены тепловодными видами: фрагиларией (Fragilaria) и мелозирой (Melosira granulata). Осенью, с понижением температуры воды до +10, +12 °С и ниже, снова наблюдается подъем продуктивности холодноводных видов диатомовых. Однако, в отличие от весеннего сезона, в это время заметно большую роль играют сине-зеленые водоросли.

В морских водах умеренных широт весенняя фаза в фитопланктоне также выделяется вспышкой диатомовых водорослей; летняя же -- повышением видового разнообразия и обилия перидинеи при депрессии продуктивности фитопланктона в целом.

Из химических факторов, влияющих на распределение фитопланктона, на первое место следует поставить солевой состав воды. При этом общая концентрация солей является важным фактором качественного (видового) распределения по типам водоемов, а концентрация питательных солей, прежде всего солей азота и фосфора,- количественного распределения, т. е. продуктивности.

Общая концентрация солей нормальных (в экологическом смысле) природных вод варьирует в очень широких пределах: примерно от 5-10 до 36 000-38 000 мг/л (от 0,005-0,01 до 36--38°/0О). В этом диапазоне солености выделяются два основных класса водоемов: морские с соленостью 36--38°/00, т. е.36 000-- 38 000 мг/л, и пресные с соленостью от 5--10 до 400--500 и даже до 1000 мг/л. Промежуточное положение по концентрации солей занимают солоноватые воды. Этим классам вод, как было показано выше, соответствуют и основные группы фитопланктона по видовому составу.

Экологическое значение концентрации биогенных веществ проявляется в количественном распределении фитопланктона в целом и составляющих его видов.

Продуктивность, или «урожайность», микроскопических водорослей фитопланктона, как и урожайность крупной растительности, при прочих нормальных условиях в очень большой степени зависит от концентрации питательных веществ в окружающей среде. Из минеральных питательных веществ для водорослей, как и для наземной растительности, в первую очередь необходимы соли азота и фосфора. Средняя концентрация этих веществ в большинстве естественных водоемов очень мала, и поэтому высокая продуктивность фитопланктона, как устойчивое явление, возможна лишь при условии постоянного поступления минеральных веществ в верхний слой воды -- в зону фотосинтеза.

Правда, некоторые сине-зеленые водоросли способны еще усваивать элементарный азот из растворенного в воде воздуха, однако таких видов немного и их роль в обогащении азотом бывает существенной лишь для очень мелких водоемов, в частности на рисовых полях.

Внутренние водоемы удобряются азотом и фосфором с берега, за счет приноса питательных веществ речной водой с водосборной площади всей речной системы. Поэтому наблюдается четкая зависимость продуктивности озер и мелководных внутренних морей от плодородия почв и некоторых других факторов, действующих в пределах водосборной площади их бассейнов (речных систем). Наименее продуктивен фитопланктон при ледниковых озер, а также водоемов, расположенных на кристаллических породах и в районах с большим количеством болот в пределах водосборной площади. Примером последних могут служить озера Северной Карелии, Кольского полуострова, Северной Финляндии, Швеции и Норвегии. Наоборот, водоемы, расположенные в пределах высокоплодородных почв, отличаются высоким уровнем продуктивности фитопланктона и других сообществ (Азовское море, нижневолжские водохранилища, Цимлянское водохранилище).

Продуктивность фитопланктона зависит и от динамики воды, динамического режима вод. Влияние может быть прямым и косвенным, что, однако, не всегда легко различить. Турбулентное перемешивание, если оно не слишком интенсивно, при прочих благоприятных условиях прямо способствует повышению продуктивности диатомовых водорослей, так как многие виды этого отдела, обладая относительно тяжелой оболочкой из кремния, в спокойной воде опускаются на дно. Поэтому ряд массовых пресноводных видов, в частности из рода мелозира, интенсивно развиваются в планктоне озер умеренных широт лишь весной и осенью, в периоды активного вертикального перемешивания воды. При прекращении такого перемешивания, наступающем при прогреве верхнего слоя до +10, +12 °С и образовании при этом во многих озерах температурного расслоения водной толщи, эти виды из планктона выпадают.

Другие водоросли, прежде всего сине-зеленые, наоборот, не выносят даже относительно слабого турбулентного перемешивания воды. В противоположность диатомовым многие виды сине-зеленых наиболее интенсивно развиваются в предельно спокойной воде. Причины высокой чувствительности их к динамике вод не вполне установлены.

Однако в тех случаях, когда вертикальное перемешивание вод распространяется на большую глубину, оно подавляет развитие даже относительно теневыносливых диатомовых. Связано это с тем, что при глубоком перемешивании водоросли периодически выносятся токами воды за пределы освещенной зоны - зоны фотосинтеза.

Косвенное влияние динамического фактора на продуктивность фитопланктона состоит в том, что при вертикальном перемешивании воды питательные вещества поднимаются из придонных слоев воды, где они не могут быть использованы водорослями вследствие недостатка света. Здесь проявляется взаимодействие нескольких экологических факторов - светового и динамического режимов и обеспеченности питательными веществами. Такая взаимосвязь характерна для природных процессов.

Уже в начале нашего века гидробиологи открыли особое значение фитопланктона в жизни водоемов как основного, а на обширных океанических просторах и единственного производителя первичного органического вещества, на базе которого создается все остальное многообразие водной жизни. Это определило повышенный интерес к изучению не только качественного состава фитопланктона, но и количественного распределения его, а также факторов, регулирующих это распределение.

Элементарный метод количественной оценки фитопланктона, который на протяжении нескольких десятилетий был основным, да и теперь еще не полностью отвергнут, - метод отцеживания его из воды с помощью планктонных сеток. В сконцентрированной таким путем пробе просчитывают количество клеток и колоний по видам и определяют общую численность их на единицу поверхности водоема. Этот простой и доступный метод имеет, однако, существенный недостаток -- он не полностью учитывает даже относительно крупные водоросли, а самые мелкие (наннопланктон), которые во многих водоемах значительно преобладают, планктонные сетки не улавливают.

В настоящее время пробы фитопланктона берут в основном батометром или планктобатометром, позволяющим «вырезать» монолит воды с заданной глубины. Сгущение пробы производится методом осаждения в цилиндрах или фильтрацией через микрофильтры: то и другое гарантирует учет водорослей всех размеров.

Когда определились огромные различия в размерах водорослей, составляющих фитопланктон (от нескольких до 1000 мкм и более), стало ясно, что для сравнительной оценки продуктивности фитопланктона по водоемам величинами численности пользоваться нельзя. Более реальным показателем для этой цели является общая биомасса фитопланктона на единицу площади водоема. Однако в дальнейшем и этот метод был забракован по двум основным причинам: во-первых, расчеты биомассы клеток, имеющих у разных видов разную конфигурацию, очень трудоемки; во-вторых, вклад мелких, но быстро размножающихся водорослей в общую продукцию сообщества за единицу времени может быть значительно большим, чем крупных, но медленно размножающихся.

Истинным показателем продуктивности фитопланктона является скорость образования им вещества за единицу времени. Для определения этой величины пользуются физиологическим методом. В процессе фотосинтеза, происходящем только на свету, поглощается углекислота и выделяется кислород. Наряду с фотосинтезом происходит и дыхание водорослей. Последний процесс, связанный с поглощением кислорода и выделением углекислоты, превалирует в темноте, когда фотосинтез прекращается. Метод оценки продуктивности фитопланктона основан на количественном сопоставлении результатов фотосинтеза (процесса продукции) и дыхания (процесса деструкции) сообщества по балансу кислорода в водоеме. Для этой цели используются пробы воды в светлых и темных склянках, экспонируемых в водоеме обычно на сутки на разных глубинах.

Для повышения чувствительности кислородного метода, непригодного для малопродуктивных вод, стали применять изотопную (радиоуглеродную) разновидность его. Однако впоследствии выявились недостатки кислородного метода в целом, и в настоящее время широко применяют хлорофилльный метод, основанный на определении содержания хлорофилла в количественной пробе фитопланктона.

В настоящее время уровень продуктивности фитопланктона многих внутренних водоемов определяется не столько природными условиями, сколько общественно-экономическими, т. е. плотностью населения и характером хозяйственной деятельности в пределах водосборной площади водоема. Эта категория факторов, именуемая в экологии антропогенными, т. е. происходящими от деятельности человека, приводит к обеднению фитопланктона в одних водоемах, а в других, наоборот, к значительному повышению его продуктивности. Первое происходит в результате сброса в водоем токсических веществ, содержащихся в сточных водах промышленного производства, а второе - при обогащении водоема биогенными веществами (особенно соединениями фосфора) в минеральной или органической форме, содержащимися в больших концентрациях в водах, стекающих с сельскохозяйственных территорий, из городов и мелких селений (бытовые стоки). Биогены содержатся и в сточных водах многих промышленных производств.

Второй вид антропогенного влияния - обогащение водоема биогенными веществами - повышает продуктивность не только фитопланктона, но и других водных сообществ, до рыб включительно, и его следовало бы рассматривать как благоприятный с экономической точки зрения процесс. Однако во многих случаях стихийное антропогенное обогащение водоемов первичными питательными веществами происходит в таких масштабах, что водоем как экологическая система оказывается перегруженным биогенами. Следствием этого является чрезмерно бурное развитие фитопланктона («цветение» воды), при разложении которого выделяется сероводород или другие токсические вещества. Это приводит к гибели животного населения водоема и делает воду непригодной для питья.

Нередки случаи и прижизненного выделения водорослями токсических веществ. В пресноводных водоемах чаще всего это наблюдается при массовом развитии сине-зеленых водорослей, в частности видов рода микроцистис (Microcystis). В морских водах отравление воды нередко вызывается массовым развитием мелких жгутиковых. В таких случаях вода иногда окрашивается в красный цвет, отсюда и название этого явления - «красный прилив».

Понижение качества воды в результате антропогенной перегрузки водоема биогенными веществами, вызывающей чрезмерное развитие фитопланктона, принято называть явлением антропогенной эвтрофикации водоема. Это одно из печальных проявлений загрязнения окружающей среды человеком. О масштабах этого процесса можно судить по тому, что загрязнение интенсивно развивается в таких огромных пресных водоемах, как озеро Эри, и даже в некоторых морях.

Естественное плодородие морских поверхностных вод определяется разными факторами. Пополнение питательными веществами мелководных внутренних морей, например Балтийского, Азовского, происходит в основном за счет приноса их речными водами.

Поверхностные воды океанов обогащаются питательными веществами в районах выхода глубинных вод на поверхность. Явление это вошло в литературу под названием апвеллинга. Очень интенсивен апвеллинг у перуанского побережья. На базе высокой продукции фитопланктона здесь чрезвычайно высока продукция беспозвоночных, а за счет этого растет численность рыб. Небольшая страна, Перу в 60-х годах по уловам рыбы вышла на первое место в мире.

Мощная продуктивность фитопланктона в холодных водах арктических морей и особенно в водах Антарктики определяется также подъемом глубинных вод, обогащенных биогенными веществами. Подобное явление наблюдается и в некоторых других районах океана. Противоположное явление, т. е. обеднение поверхностных вод питательными веществами, тормозящее развитие фитопланктона, наблюдается в районах с устойчивой изоляцией поверхностных вод от глубинных.

Таковы основные особенности типичного фитопланктона.

Продукционный цикл фитопланктона

Основными факторами, определяющими первичную продукцию фитопланктона, являются толщина фотического слоя, обеспеченность фитопланктона биогенными элементами и продолжительность продукционного цикла.
В целом указанные параметры зависят от конкретных климатических и гидрологических условий каждого района и проявляются в сроках наступления весеннего развития, которые тесно связаны следовым режимом и окончания продукционного цикла; кроме того, эти параметры определяются запасом биогенных элементов, образовавшимся в фотическом слоек началу весеннего развития и определяемым речным стоком и глубиной зимнего конвективного перемешивания, летней вертикальной турбулентной диффузией, количеством солнечной энергии (зависящей в свою очередь от времени года и климатических факторов), а также структурно-функциональными характеристиками фитопланктона.
Фитопланктон Белого моря представляет собой качественно обедненный планктон Баренцева моря с большой примесью «литоральных» эпифитных и пресноводных форм (Кокин, Кольцова, 1972). В Белом море по сравнению с южной частью Баренцева моря по числу видов преобладают холодолюбивые диатомеи и снижается видовое разнообразие перидиней. Подоле содержания водорослей в составе фитопланктона (63%) Белое море приближается к таким высокоарктическим эпиконтинентальным морям, как Карское (67%) и Лаптевых (64 %), что лишний раз указывает на его арктический характер. Формирование качественного и количественного состава фитопланктона в различные биологические сезоны происходит под влиянием как биотических, так и абиотических факторов среды.


Изменение структурных и функциональных показателей сообщества в течение продукционного цикла можно проследить на примере анализа биологических сезонов в Кандалакшском заливе в 1970 г. (Федоров, Бобров, 1977, Бобров, 1982).
Всего за период наблюдений с 15 апреля по 26 октября в 1970 г. поставлена 51 станция (дважды в неделю). Продукцию определили радиоуглеродным методом склянок на горизонтах 0,2.5, 5, 10, 25, 50, 75 м и у дна. Суммарную солнечную радиацию измеряли пиранометром Янышевского в подводной модификации. Одновременно с постановкой опытов по определению первичной продукции с соответствующих горизонтов проводили батометрические количественные сборы фитопланктона и изучение некоторых гидролого-гидрохимических параметров. При расчете эффективности фотосинтетического процесса данные измерения первичной продукции были выражены в энергетических единицах, исходя из следующего расчета: на фиксацию I моля CO2 расходуется 112 калорий световой энергии, а эта величина соответствует 9.36 кал/мгC.
Переход от численности особей фитопланктона к весовым характеристикам производили по формуле:

Формула получена с учетом того, что в сухой биомассе водорослей содержится 35 % золы (Федоров и др., 1974).
Величины суточных сумм радиации в течение вегетационного периода 1970 г. колебались от 20.6 до 2300 кал/(см". день). Увеличение проникающей в BOAy солнечной радиации в первой декаде мая до 100.6-181.4 кал/(см" - день) совпадает повремени с вскрытиемледового покрова. Некоторое снижение значений суммарной солнечной энергии было вызванометеорологическими условиями Улучшение погодных условий и увеличение длины светового дня привело к практическому совпадению светового максимума (2300 кал/(см". день)) с календарным днем летнего солнцестояния. Последующее падение дневных сумм солнечной радиации имеет довольно плавный характер и обусловливается уменьLEHI HEM продолжительности CBPTOBOTO IH H H BECOTE CONHL kl. К концу вегетационного сезона величина солнечной энергии падает до 20 кал/(см". день).
Таким образом, за весь период наблюдений, охватывающий 183 дня, величина энергии выразилась суммарным значением 22.8 ккал/см". Неучтенная энергия проникающей солнечной радиации в период осении «подледной весны» была получена экстраполяцией и составила 22 ккал/см". Всего за сезон в водоем проникло 25 ккал/см". Последнее значение можно считать годовой суммой, поскольку в зимние месяцы количество энергии солнечной радиации, проникающей под ледяной покров, незначительно, Изучение распространения солнечной энергии в толще воды на протяжении вегетационного периода позволило рассчитать коэффициент поглощения света водой k=0.37-002.
Температура в поверхностном горизонте в течение вегетационного сезона колебалась от - 1.54 до 15.65 °С. С глубиной температурные колебания сглаживались. Весенний период после вскрытия льда характеризуется нарушением гомотермии и установлением отчетливо выраженной стратификации. Зона температурного скачка с ростом проникающей солнечной энергии и соответствующим прогревом ВМ постепенно перемещалась из поверхностного в более глубокие слои. В период максимального значения солнечной энергии термоклин располагался на глубине 25 м и удерживался на этом горизонте до конца сентября. В октябре температурный скачок был расположен глубже и обнаруживалась тенденция к гометермии.
В табл. 5.1 представлены некоторые абиотические характеристики Белого моря, полученные на основе анализа их сезонной LHHaMHK.H.
Анализ вегетационного развития планктона и его продукционHEIM Xapa KTepH cTH K позволяет выделить и установить продолжительность основных периодов вегетации, названных В. Г. Богоровым (1938) биологическими весной, летом и осенью. Для Белого моря характерны все три периода. Их продолжительность для Кандалакшского залива в 1970 г. составила 48, 92 и 43 сут соответственно.


Результаты, характеризующие абсолютные величины продукционного процесса в различные периоды вегетации, представлены в табл. 5.2. Коэффициент Р/Сент рассчитывали как отношение первичной продукции к биомассе (выраженной в углероде) для Bice TO CTO,JI (5a B OIE bil.


Примечание. Над чертой - среднее для сезона, под чертой - пределы колебаний данной величины.
Начало биологической весны отмечено впервой декаде апреля, Весенний подледный климакс (Федоров, 1970a; Кокин, Кольцова, 1972) продолжается около 2 недель и характеризуется устойчивым P/Cфи-коэффициентом. Распределение экониш водорослей соответствует второй модели Мак-Артура (Кокин, Кольцова, 1972).
Весенняя вспышка величин биомассы и численности водорослей начинается подо льдом и после вскрытия льда достигает максимума. Фитопланктон представлен BH La MH JULHETOMOBOTO KOM TIJEKCE: Fragilaria oceanica, Chaetoceros holsa ficus, Nitzschia frigida, Maticula septentrionaliа. Самым массовым видом была F. oceапіса. Фотический слой обогащен биогенными элементами и содержит 86 % всей биомассы фитопланктона, которая, так же как и скорость фотосинтеза, в этот период достигает максимального значения за весь вегетационный период (см. табл. 5.2). Выедание водорослей зоопланктоном (Конопля, 1973) приводит к падению биомассы водорослей и снижению пищевой конкуренции за биогенные элементы, при этом распределение водорослей соответствует уже первой модели Мак-Артура.
Летний максимум развития фитопланктона (первый), обусловленный увеличением числа диатомовых, после спада их численности «подхватывается» перидиниевыми водорослями, образующими второй летний максимум. С середины июля и до конца августа устанавливается летний климакс с устойчивым P/Cфиткоэффициентом. Доминирующими формами биологического лета оказываются Sceletoпeтa costalит и виды рода Chaetoceros (главным образом Ch. сотргеssиs). Первичная продукция в этот период характеризуется средней величиной 0,091 г С/(м", сут), а биомасса - 0.192 гC/м". Развита трофическая конкуренция за биогенные элементы,
Осенняя вспышка фитопланктона выражена слабо. Она наблюдается сконца августа до середины сентября и поросту биомассы ee, Rb Ae/y!"b, "pyAhQ. Только увеличение первичной продукции до 0.125 г С/(м", сут) и Р/Сеит-коэффициента (до 1812) в 20-х числах сентября указывает на кратковременную активацию фитопланктона. В этот период наблюдается развитие Dinophyes пorwegica - холодолюбивого доминанта биологической осени (Федоров, 1969). Период осенней сукцессии приводит экосистему к кратковременному климаксу, который длится вплоть до конца сентября. Дальнейшее снижение температуры и солнечной радиации, а также увеличение слоя перемешивания в связи с нарушением скачка плотности приводит к перераспределению биомассы фитопланктона по глубине и преобладанию процессов деструкции над продукцией.
В целом такой ход продукционного цикла фитопланктона можно ожидать и в других районах моря. Возможные различия будут выражены в сроках начала и конца вегетации фитопланктона, а также в некоторых различиях качественного состава доминирующих видов водорослей (Житина, 1981), что несомненно отразится на результатах продукционных процессов фитопланктона этих частей акватории.
Данные исследований продукционного цикла фитопланктона в 1970 г. позволили уточнить классификацию трофности Белого моря. В качестве дополнительной характеристики была использована эффективность использования солнечной энергии фитопланктоном (см. табл. 5.2), являющаяся интегральной характеристикой состояния фитопланктона, зависящая от комплекса условий окружающей среды и не обнаруживающая прямой связи с биомассой фитопланктона (Федоров, Бобров, 1977).
Если сравнить расчетные значения основных продукционных характеристик фитопланктона с известными данными для различных по продуктивности районов океана (Сорокин, 1973), то можно сделать вывод, что Кандалакшский залив относится к малопродуктивным районам с уровнем продукции фитопланктона 0,05- 0.10 г С/(м*- cут) и эффективностью использования солнечной энергии 0.04 %, характерной для олиготрофных вод. Следовательно, Кандалакшский залив, согласно классификации О. И. Кобленц-Мишке (Кобленц-Мишке и др., 1970), можно отнести к 1-му классу трофности с очень незначительным перемешиванием Глубинных вод.

Фитопланктон - это класс организмов, встречающийся в больших водоемах и включающий в себя широкий ряд различных подвидов. Это чрезвычайно разнообразная группа, и многообразие этих организмов бросает вызов эволюции и естественному отбору. Согласно общим принципам нехватка ресурсов делает невозможным выживание в экосистеме такого большого количества разных организмов без уничтожения друг друга.

Но так или иначе они существуют. Вот такая загадка.

Микроскопический фитопланктон живет по всему морю, в его освещенной, фотической зоне - до 100 метров в глубину. Кроме того, микроскопические водоросли могут очень быстро расти и размножаться - некоторые виды способны удваивать свою биомассу за день! Поэтому, они - главная морская растительность, основа жизни в море: улавливая солнечный свет, они превращают воду, углекислый газ, и соли морской воды - в свое живое вещество - растут.

На языке экологии это процесс называется первичной продукцией. Зоопланктон поедает фитопланктон - и тоже растет и размножается, это уже вторичная продукция. А затем наступает черед редукции - разложения: все, рождается и живет - умирает, и останки всех планктеров, и вообще всего живого в море - достаются бактериям, населяющим водную толщу.Бактериопланктон разлагает эти останки, возвращая вещество в неорганическое состояние. Это - круговорот веществ в море.

К фитопланктону относятся не только водоросли, но и планктонные фотосинтезирующие бактерии. Это цианобактерии (раньше их еще называли сине-зелеными водорослями, но это настоящие бактерии - прокариоты - в их клетках нет ядер). В Черном море они встречаются, в основном, в прибрежных водах, особенно, в опресненных районах - рядом с устьями рек, много их опресненном и переудобренном Азовском море; многие цианобактерии выделяют токсины.

Все планктонные растения - одноклеточные, вокруг них плавает столько быстрых и ловких хищников - как же им удается уцелеть? Ответ на этот вопрос таков: уцелеть не удается, но продлить существование получается.

Во-первых , большинство растений планктона - подвижны: у них есть жгутики, у кого один, у кого - пара, а у зеленых празинофитов Prasinophyceae - целых четыре (или даже восемь!), и носятся они по своему маленькому миру - не менее шустро, чем простейшие животные.

Во-вторых, очень многие планктонные водоросли имеют внешний скелет - панцирь. Он защитит от мелких инфузорий, но будет бесполезен против челюстей крупных личинок раков. Церациум, например, такой большой - до 400 микрон, его панцирь такой крепкий, что почти никто из зоопланктеров с ним не справится, но планктоядные рыбы съедят и его.

Морской фитопланктон - первичная форма жизни на Земле. Он является основой водной пищевой цепи и присутствует в рационе всех обитателей моря: от зоопланктона до китов. Фитопланктон является идеальной пищей для живых организмов и обладает колоссальной питательной ценностью. В нем содержатся все питательные вещества и микроэлементы, необходимые клеткам организма для нормального протекания обменных процессов. Хорошим доказательством уникальных свойств морского фитопланктона могут служить синие киты. Эти морские гиганты, обладающие огромной силой и выносливостью, живут более ста лет и до последнего дня сохраняют способность размножаться. Рацион китов полностью состоит из планктона, который они поглощают в огромном количестве: от 3 до 8 тонн в день.

Учеными доказано, что морской фитопланктон насыщен витаминами, аминокислотами, антиоксидантами и может использоваться в пищу как богатейший источник минералов, таких как селен, цинк, магний, хром, стронций и др. Он может заменить многие лекарственные препараты и предотвратить множество заболеваний: от диабета до болезни Альцгеймера. Важным преимуществом перед другими биологически активными добавками является микроскопический размер полезных веществ и органическая форма, благодаря чему организм усваивает их быстро и легко.

Однако, при всех неоспоримых достоинствах морского фитопланктона существует одно «но» - он заключен в плотную защитную оболочку, как ядрышко ореха заключено в скорлупу. В процессе эволюции человеческий организм утратил способность расщеплять эту оболочку, поэтому морской фитопланктон не усваивается человеком.

Чтобы человек мог усваивать полезные вещества, содержащиеся в морском фитопланктоне, необходимо было решить непростую задачу: каким-то образом разрушить защитную оболочку, сохранив при этом питательную ценность микроэлементов. С этой задачей блестяще справился Том Харпер, владелец морской фермы по выращиванию моллюсков из Канады. В 2005 году он изобрел новую технологию, позволяющую раскрывать оболочку фитопланктона без использования тепловой обработки, замораживания или применения химикатов. Этот технологический процесс, названный Alpha 3 CMP, был запатентован, но история на этом не закончилась.

Какое-то время спустя основатель компании Forever Green Рон Уильямс вышел на Тома Харпера с предложением о сотрудничестве. Был подписан контракт, согласно которому компания ForeverGreen получила эксклюзивное право на использование в своих продуктах морского фитопланктона, обработанного по технологии Alpha 3 CMP. Таким образом, она является единственной в мире компанией, которая производит продукты, содержащие 100% натуральный и усвояемый человеком морской фитопланктон.

Мальдивы прекрасны сами по себе. Жаркое солнце, ласковое море и бескрайняя береговая линия. Но есть еще одна достопримечательность Мальдив - биолюминесцентный фитопланктон. Уникальные водоросли известны также под названием «красный прилив». Местные жители утверждают, что купание в подобных водах вызывает небольшой дискомфорт, поэтому такая береговая линия чаще всего является безлюдной. С наступлением темноты биолюминесцентный фитопланктон начинает светиться, освещая побережье фантастическим голубым светом. Тайваньский фотограф Will Ho запечатлел это явление.

Светящиеся одноклеточные динофлагелляты запускают свою иллюминацию от движения в толще воды: электрический импульс, возникающий в результате механического стимула, открывает ионные каналы, работа которых и активирует «светящийся» фермент.

Учёным удалось окончательно раскрыть загадку свечения динофлагеллят - морских простейших, составляющих значительную часть пелагического планктона. Некоторые группы этих одноклеточных, такие как ночесветки, обладают способностью к биолюминесценции. Собираясь вместе, они могут быть замечены даже из космоса: огромная океаническая поверхность испускает голубоватый свет.

По мнению учёных, биолюминесцентный аппарат этих простейших работает так. При движении в толще воды механические силы вызывают электроимпульс, который устремляется внутрь клетки, к специальной вакуоли. Эта вакуоль, полый мембранный пузырёк, наполнена протонами. С ней соединены сцинтоллоны - мембранные пузырьки со «светящимся» ферментом люциферазой. Когда к вакуоли приходит электрический импульс, между ней и сцинтиллоном открываются протонные ворота. Ионы водорода перетекают в сцинтиллон и закисляют среду в нём, что делает возможным протекание биолюминесцентной реакции.

Лучше всего свечение этих простейших можно наблюдать в период размножения: число одноклеточных становится таким, что морская вода напоминает молоко - правда, уж слишком ярко-голубого цвета. Впрочем, любоваться динофлагеллятами следует с осторожностью: многие из них вырабатывают опасные для человека и животных токсины, поэтому, когда их становится слишком много, получать эстетическое удовольствие от светящегося прилива будет безопаснее на берегу.«Я работаю в этой области почти 30 лет, и я думал, что меня ничем не удивишь», говорит Кевин Арриго, океанограф-биолог из Стэнфордского университета. Лед плохо пропускает свет, особенно если он лежит толстым слоем, как это и было в Арктике. Снежный покров делает доступ света в глубь невозможным. В этом и состоит парадокс существования фитопланктона в толще льда, поскольку этим микроорганизмам необходим солнечный свет, без которого невозможен фотосинтез.

Теплый воздух способствует таянию снега. Когда снег начинает таять, ледяной покров начинает темнеть, позволяя льду поглощать больше света. Благодаря специальным камерам, опущенным под лед, исследователи обнаружили, что фитопланктон развивается чрезвычайно быстро. Благодаря солнечному свету и постоянному притоку питательных веществ от Берингова пролива, организмы могут процветать на глубине более 50 метров.

Чем это процветание обернется для остальных обитателей подводного мира, пока не ясно. Но Арриго опасается, что, находясь подо льдом, эти микроорганизмы могут усложнить жизнь другим подводным обитателям в этом районе. Чтобы подтвердить или опровергнуть эти опасения, потребуется долго и кропотливо работать, поскольку спутники не могут видеть сквозь лед.

«Нам очень повезло, что мы обнаружили фитопланктон, но мы не знаем, насколько далеко он распространится, и какие последствия это за собой повлечет», говорит Жан-Эрик Тремблей, океанограф-биолог из Университета Лаваля в Квебеке, Канада.