Это научно-популярная статья, в которой я хочу рассказать интересующимся ядерным синтезом о его принципах. Это "холодный" и "горячий" термояд, радиоактивный распад, ядерная реакция расщепления и имеющиеся данные о синтезе широкого спектра веществ в так называемом процессе трансмутации.
Что же является тем «философским камнем», который позволит человеку получить в свое распоряжение ядерный синтез?
- На мой взгляд, это знания! Знания без догм и шарлатанства! При постижении которых будут провалы и покорения новых вершин.
Возможно прочитав ее, Вы заинтересуетесь этими проблемами и в будущем займетесь ими основательно подготовившись. Здесь я попытался рассказать об основных принципах заложенных в природе вещества - материи и лишний раз подтверждающих представление о простоте и оптимальности природы.

Что такое ядерный синтез?

В литературе мы часто находим термин «Термоядерный синтез».

Термоядерная реакция, термоядерный синтез (синоним: ядерная реакция синтеза)

Разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые ядра. http://ru.wikipedia.org/wiki/ введите для поиска - Термоядерный синтез

Точнее, под термином «Термоядерный синтез» принято считать «Ядерный синтез» с выделением энергии (тепла).

В то же время, понятие «Ядерный синтез» включает:

  1. Разделение ядра исходного, более тяжелого элемента обычно на два легких ядра, с образованием новых химических элементов.
    При выполнении условия равенства числа нуклонов тяжелого ядра сумме нуклонов легких ядер плюс получившиеся в процессе деления свободные нуклоны. И суммарная энергия связи в тяжелом ядре равна сумме энергий связи в легких ядрах плюс выделившаяся свободная (избыточная энергия). Примером может служить ядерная реакция деления ядра U.
  2. Соединение двух меньших ядер в одно большее, с образованием нового химического элемента.
    При выполнении условия равенства числа нуклонов тяжелого ядра сумме нуклонов легких ядер плюс получившиеся в процессе деления свободные нуклоны. И суммарная энергия связи в тяжелом ядре равна сумме энергий связи в легких ядрах плюс выделившаяся свободная (избыточная энергия). Примером может служить получение трансурановых элементов физических экспериментах «мишень исходного вещества - ускоритель - ускоренные ядра (протоны).

Для этого процесса существует особое понятие Нуклеосинтез - процесс образования ядер химических элементов тяжелее водорода в ходе реакции ядерного синтеза (слияния).

В процессе первичного нуклеосинтеза образуются элементы не тяжелее лития, теоретическаямодель Большого Взрыва предполагает следующее соотношение элементов:

H - 75%, 4He - 25%, D - 3·10 −5 , 3He - 2·10 −5 , 7Li - 10 −9 ,

что хорошо согласуется с экспериментальными данными определения состава вещества в объектах с большим красным смещением (по линиям в спектрах квазаров.

Звёздный нуклеосинтез - собирательное понятие для ядерных реакций образования элементов тяжелее водорода, внутри звёзд, а также, в незначительной степени,на их поверхности.

В том и другом случае, скажу возможно кощунственную для некоторых фразу, синтез может проходить как при выделении избыточной энергии связи, так и при поглощении недостающей. Поэтому корректнее говорить не о термоядерном синтезе, а о более общем процессе - ядерном синтезе.

Условия существования ядерного синтеза

Общеизвестны критерии существования термоядерного синтеза (для реакции D-T), который возможен при одновременном выполнении двух условий:

где n - плотность высокотемпературной плазмы, τ - время удержания плазмы в системе.

От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

В настоящее время (2012) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии. И срок его пуска уже не первый раз откладывается.

Практически те же критерии, но более общие, для синтеза ядер необходимо сблизить их на расстояние порядка 10 −15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания.

Условия преобразования

Условия преобразования известны, это сближение ядер до расстояний когда начинают действовать внутриядерные силы.

Но это простое условие, не так-то просто выполнить. Существуют кулоновские силы положительно, одноименно заряженных ядер, участвующих в ядерной реакции, которые необходимо преодолеть чтобы сблизить ядра на то расстояние когда начинают действовать внутриядерные силы и ядра объединяются.

Что надо для преодоления кулоновских сил?

Если абстрагироваться от необходимых энергетических затрат на это, то совершенно определенно можно сказать, что сблизив любые два и более ядер на расстояние меньшее 1/2 диаметра ядра мы приведем их к состоянию когда внутриядерные силы приведут к их слиянию. В результате слияния образуется новое ядро, масса которого будет определяться суммой нуклонов в исходных ядрах. Образовавшееся ядро, в случае его неустойчивости, в результате того или иного распада придет через некоторое время в некоторое стабильное состояние.

Обычно ядра участвующие в процессе синтеза существуют в виде ионов, частично или полностью потерявшие электроны.

Сближение ядер достигается несколькими путями:

  1. Разогрев вещества для придания его ядрам необходимой энергии (скорости) для возможного их сближения,
  2. Создание сверхвысокого давления в области синтеза достаточного для сближения ядер исходного вещества,
  3. Создание внешнего электрического поля в зоне синтеза достаточное для преодоления кулоновских сил,
  4. Создание сверхмощного магнитного поля сжимающего ядра исходного вещества.

Оставив пока для сохранения пока терминологию, посмотрим что такое термоядерный синтез.

Последнее время мы редко слышим об исследованиях «горячего» термоядерного синтеза.

Нас одолевают свои проблемы, более жизненные для нас, чем для всего человечества. Да это и понятно кризис продолжается и мы стремимся выжить.

Но исследования и работы в области термоядерного синтеза продолжаются. Существует два направления работ:

  1. так называемый, «горячий» ядерный синтез,
  2. «холодный» ядерный синтез, преданный анафеме, официальной наукой.

Причем их отличие горячий - холодный только описывает условия, которые необходимо создать для протекания данных реакций.

Имеется в виду что в «горячем» ядерном синтезе продукты участвующие в термоядерной реакции надо разогреть, чтобы придать их ядрам определенную скорость (энергию) для преодоления кулоновского барьера, чем создать условия для протекания реакции ядерного синтеза.

В случае «холодного» ядерного синтеза - синтез протекает при внешних нормальных условиях (усредненных по объему установки, а температура а зоне синтеза (в микро объеме) полностью соответствует выделяемой энергии), но поскольку существует сам факт ядерного синтеза, условия необходимые для слияния ядер так же выполняются. Как Вы понимаете требуются определенные оговорки и уточнения, когда говорят о «холодном» ядерном синтезе. Поэтому едва ли применим для этого термина «холодный», скорее подходит обозначение, LENR (низко энергетические ядерные реакции).

Но, думаю Вы понимаете, что термоядерная реакция идет с выделением энергии и в обоих случаях ее результат «горячий» - это выделение тепла. Так например при «холодном» ядерном синтезе, как только количество фактов синтеза станет достаточно большим температура активной среды начнет повышаться.

Не боясь быть нудным повторю, суть ядерного синтеза заключается в сближении ядер вещества участвующего в реакции на расстояние когда на участвующие в ядерном синтезе атома начинают действовать (преобладать) внутриядерные силы под действием которых ядра сольются.

«Горячий» ядерный синтез

Эксперименты с «Горячим» ядерным синтезом проводятся на сложных и дорогих установках использующих самые передовые технологии и позволяющих разогревать плазму до температур более 10 8 К и удерживать ее в вакуумной камере с помощь сверх сильных магнитных полей достаточно длительное время (в промышленной установке это должно выполняться в непрерывном режиме - это все время ее работы, в исследовательских это может быть режим одиночных импульсов и на время необходимое для протекания термоядерной реакции, в соответствии с критерием Лоусона (если интересно, см. http://ru.wikipedia.org/wiki/ введите для поиска - Критерий Лоусона).

Существует несколько типов таких установок, но наиболее перспективной считается установка типа «ТОКАМАК» -ТО роидальная КА мера с МА гнитными К атушками.

Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком О. А. Лаврентьевым в работе середины 1950-го года. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза А. Д. Сахаров и И. Е. Тамм в 1951 году предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем.

Термин « токамак» был придуман позже И. Н. Головиным, учеником академика Курчатова. Первоначально он звучал как «токамаг» - сокращение от слов «то роидальная ка мера маг нитная», но Н. А. Явлинский, автор первой тороидальной системы, предложил заменить «-маг» на «-мак» для благозвучия. В последующем эта версия была заимствована всеми языками.

Первый токамак был построен в 1955 году, и долгое время токамаки существовали только в СССР. Лишь после 1968 года, когда на токамаке T-3 , построенном в Институте атомной энергии им. И. В. Курчатова под руководством академика Л. А. Арцимовича, была достигнута температура плазмы 10 млн градусов, и английские ученые со своей аппаратурой подтвердили этот факт, в который поначалу отказывались верить, в мире начался настоящий бум токамаков. Начиная с 1973 программу исследований физики плазмы на токамаках возглавил Кадомцев Б. Б.

Официальная физика считает токамак единственно перспективным устройством для осуществления управляемого термоядерного синтеза.


В настоящее время (2011) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии. (Закончено проектирование)

Проект iter - путь - проект международного экспериментального термоядерного реактора.
Проектирование реактора полностью закончено и выбрано место для его строительства на юге Франции, в 60 км от Марселя, на территории исследовательского центра Кадараш.
Текущие планы:
Исходныная дата, гг. Новая дата, гг.
2007-2019 2010-2022 период строительства реактора.
2026 2029 Первые реакции термоядерного синтеза
2019-2037 2022 - 2040 ожидаются эксперименты, по истечении которых проект будет закрыт,
После 2040 2043 реактор станет производить электроэнергию (при условии успешных экспериментов)
В связи с экономической ситуацией возможна задержка еще на 3 года, что возможно приведет к необходимости доработки проекта. Это приведет к общей задержке примерно на 5 лет.
В проекте ITER принимают участие Россия, США, Китай, ЕС, Республика Корея, Индия и Япония. Поскольку реактор будет построен на территории Евросоюза, то он будет финансировать 40% стоимости проекта. Остальные страны-участницы финансируют по 10% проекта. Первоначально общая стоимость этой программы оценивалась в 13 миллиардов евро. Из них 4,7 миллиарда будет затрачено на капитальное строительство демонстрационной установки. Термоядерная мощность реактора ITER составит 500 МВт. В последующем стоимость увеличилась до 15 млрд евро, аналогична сумма потребуется для проведения исследований.

В Японии ранее уже начинали строительство ИТЕР на севере острова Хонсю в местечке Роккасе префектуры Аомори, однако в Токио вынуждены были отказаться от самостоятельного возведения реактора, так как в проект необходимо было вложить 600-800 миллиардов иен (около $6-8 миллиардов).
«Холодный» ядерный синтез

Так называемый «холодный» ядерный синтез (как я уже говорил, он холодный пока число событий синтеза - слияния мало), не смотря на отношение официальной науки, тоже имеет место быть.

Логика подсказывает, что условия для сближения ядер могут быть достигнуты и другими способами. Пока мы просто не можем понять физику процессов происходящих в микромире, объяснить их, а поэтому получить повторяемость эксперимента и в результате практического применения.

Инструментальные подтверждения протекания ядерных реакций есть.

В множестве экспериментов зарегистрированы признаки присущие ядерному синтезу (как отдельные так и в совокупности): выделения нейтронов, выделение тепла, побочные излучения, продукты ядерного синтеза.

Логика подсказывает возможность существования ЯС без выделения нейтронов, побочных излучений и даже с поглощением энергии. Но всегда имеет место появление новых химических элементов в продуктах ядерного синтеза.

Например может иметь место ядерная реакция без нейтронов и других излучений

D + 6Li → 2 + 22,4 MeV

Больше того в природе зафиксированы подобные явления.

Ядерный синтез при расщепление вещества

Радиоактивный распад.

В природе известен синтез новых химических элементов в процессе радиоактивного распада.

Радиоактивный распад (от лат. radius «луч» и āctīvus «действенный») - спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов. Процесс радиоактивного распада также называют радиоактивностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).

Виды радиоактивного распада

Расщепление вещества, 238 U

Ядерную реакцию расщепления ядра Урана 238 U можно тоже отнести к реакциям ядерного синтеза, с тем отличием, что происходит синтез более легких ядер при том или ином расщеплении тяжелого ядра 238 U. При этом выделяется энергия которую и используют в ядерной энергетике. Но не буду здесь рассказывать о цепной реакции, ядерном реакторе...

Сказанного уже хватит чтобы отнести реакцию расщепления ядра к категории реакций ядерного синтеза.

Трансмутации вещества

Слово трансмутации, так не любимое официальной наукой, возможно за то что им, в былые времена, (когда ученых званий еще и не было) активно пользовались алхимики, все таки наиболее полно отражает процесс преобразования вещества.

Трансмутация (от лат. trans - сквозь, через, за; лат. mutatio - изменение, перемена)

Превращение одного объекта в другой. Термин имеет несколько значений, но мы опустим значения не относящиеся к нашей теме:

  • Трансмутация в физике - превращение атомов одних химических элементов в другие в результате радиоактивного распада их ядер либо ядерных реакций; в настоящее время в физике термин употребляется редко.

А возможно слово «превращение» им кажется сродни слову «волшебство», но ведь имеет место быть всем понятное естественное «превращение» изотопов одних химических элементов в другие химические элементы.

Среди тяжелых естественных радиоактивных элементов известно 3 семейства 238 92 U, 235 92 U, 232 90 U после ряда последовательных α и β распадов превращаются в стабильные 206 82 Pb, 207 82 Pb, 208 82 Pb.

И ряд других [Л. 5]:


И слово превращение здесь весьма кстати.

Конечно, кому это ближе, могут с полным правом применить термин синтез.

Здесь нельзя не упомянуть работы по очистке промышленных стоков, проводившиеся Вачаевым А.В.[Л.7], которые привели к обнаружению совершенно новых эффектов ядерного синтеза, эксперимент Уруцкоева Л.И.[Л.6], подтвердивший возможность ядерного преобразования (трансмутации) и исследования проведенные Паньковым В.А., Кузьминым Б.П.[Л.10], полностью подтвердившие результаты Вачаева А.Л по преобразование вещества в электрическом разряде. Но подробно Вы можете посмотреть их работы по ссылкам.

Экспериментаторами обсуждается возможность преобразования вещества в растениях.

Термином "Трансмутация" можно обозначить и синтез сверхтяжелых элементов.

Синтез сверхтяжелых элементов тоже ядерный синтез

Первые Трансурановые элементы (ТЭ) были синтезированы в начале 40-х гг. 20 в. в Беркли (США) группой учёных под руководством Э. Макмиллана и Г. Сиборга, удостоенных Нобелевской премии за открытие и изучение этих элементов. Известно несколько способов синтеза ТЭ. Они сводятся к облучению мишени потоками нейтронов или заряженных частиц. Если в качестве мишени используется U, то с помощью мощных нейтронных потоков, образующихся в ядерных реакторах или при взрыве ядерных устройств, можно получить все ТЭ до Fm (Z = 100) включительно. Процесс синтеза состоит либо в последовательном захвате нейтронов, причём каждый акт захвата сопровождается увеличением массового числа А, приводящим к β - распаду и увеличению заряда ядра Z, либо в мгновенном захвате большого числа нейтронов (взрыв) с длинной цепочкой β - распадов. Возможности этого метода ограничены, он не позволяет получать ядра с Z > 100. Причины - недостаточная плотность нейтронных потоков, малая вероятность захвата большого числа нейтронов и (что наиболее важно) очень быстрый радиоактивный распад ядер с Z > 100.

Для синтеза далёких ТЭ используется два типа ядерных реакций - слияния и деления. В первом случае ядра мишени и ускоренного иона полностью сливаются, а избыточная энергия образовавшегося возбуждённого составного ядра снимается путём «испарения» (выделения) нейтронов. При использовании ионов С, О, Ne и мишеней из Pu, Cm, Cf образуется сильно возбуждённое составное ядро (энергия возбуждения ~ 40-60 Мэв). Каждый испаряемый нейтрон способен унести из ядра энергию в среднем порядка 10-12 Мэв, поэтому для «остывания» составного ядра должно вылететь до 5 нейтронов. С испарением нейтронов конкурирует процесс деления возбуждённого ядра. Для элементов с Z = 104-105 вероятность испарения одного нейтрона в 500-100 раз меньше вероятности деления. Это объясняет малый выход новых элементов: доля ядер, которые «выживают» в результате снятия возбуждения, составляет всего 10-8-10-10 от полного числа ядер мишени, слившихся с частицами. В этом кроется причина того, что за последние 20 лет синтезировано всего 5 новых элементов (Z = 102-106).

В ОИЯИ разработан новый метод синтеза ТЭ, основанный на реакциях слияния ядер, причём в качестве мишеней используются плотно упакованные устойчивые ядра изотопов Pb, а в качестве бомбардирующих частиц сравнительно тяжёлые ионы Ar, Ti, Cr. Избыточная энергия ионов расходуется на «распаковку» составного ядра, и энергия возбуждения оказывается низкой (всего 10-15 Мэв). Для снятия возбуждения такой ядерной системы достаточно испарения 1-2 нейтронов. В итоге получается весьма заметный выигрыш в выходе новых ТЭ. Этим методом был осуществлен синтез ТЭ с Z = 100, Z = 104 и Z = 106.

В 1965 Флёров предложил использовать для синтеза ТЭ вынужденное деление ядер под действием тяжёлых ионов. Осколки деления ядер под действием тяжёлых ионов имеют симметричное распределение по массе и заряду с большой дисперсией (следовательно, в продуктах деления можно обнаружить элементы с Z значительно, большим, чем половина суммы Z мишени и Z бомбардирующего иона). Экспериментально было установлено, что распределение осколков деления становится шире по мере использования всё более тяжёлых частиц. Применение ускоренных ионов Xe или U позволило бы получить новые ТЭ в качестве тяжёлых осколков деления при облучении урановых мишеней. В 1971 в ОИЯИ были ускорены ионы Xe с помощью 2 циклотронов, которыми облучалась урановая мишень. Результаты показали, что новый метод пригоден для синтеза тяжёлых ТЭ.

Для синтеза ТЭ делают попытки использовать реакция (слияние) ядер титана-50 и калифорния-249. По расчетам, там вероятность образования ядер 120-го элемента несколько выше.

Устойчивые состояния ядер

Само наличие короткоживущих и долгоживущих изотопов, стабильных ядер и современное знания об их строении говорят об определенных зависимостях и сочетаниях количества нуклонов в ядре, которые придают им способность существовать в указанные выше сроки.

Это же подтверждает и отсутствие других химических элементов.

Логика подсказывают существования законов определяющих определенный нуклонный состав ядра (подобно его электронным оболочкам).

Или другими словами формирование ядра происходит по определенным квантованным зависимостям, которые подобны электронным оболочкам. Других устойчивых (долгоживущих) ядер (атомов) химических элементов просто не может быть.

В то же время это не отрицает возможность существования других сочетаний нуклонов и их количества в ядре. Но время жизни такого ядра существенно ограничено.

Что касается неустойчивых (короткоживущих) ядер (атомов), то там могут, в определенных условиях, существовать ядра имеющие другие сочетания нуклонов и их количества в ядре, по сравнению со стабильными ядрами и во множестве их сочетаний.

Наблюдения показывают, что при увеличении количества нуклонов (протонов или нейтронов) в ядре существуют определённые числа, при которых энергия связи следующего нуклона в ядре намного меньше, чем последнего. Особой устойчивостью отличаются атомные ядра, содержащие магические числа 2, 8, 20, 28, 50, 82, 114, 126 , 164 для протонов и 2, 8, 20, 28, 50, 82 , 126 , 184, 196, 228, 272, 318 для нейтронов. (Жирным выделены дважды магические числа, то есть магические и для протонов и для нейтронов)

Магические ядра являются наиболее устойчивыми. Это объясняется в рамках оболочечной модели: дело в том, что протонные и нейтронные оболочки в таких ядрах заполнены - как и электронные у атомов благородных газов.

Согласно этой модели, каждый нуклон находится в ядре в определённом индивидуальном квантовом состоянии, характеризуемом энергией, моментом вращения (его абсолютной величиной j, а также проекцией m на одну из координатных осей) и орбитальным моментом вращения l.

Оболочечная модель ядра фактически является полуэмпирической схемой, позволяющей понять некоторые закономерности в структуре ядер, но не способной последовательно количественно описать свойства ядра. В частности, ввиду перечисленных трудностей непросто выяснить теоретически порядок заполнения оболочек, а следовательно, и «магические числа», которые служили бы аналогами периодов таблицы Менделеева для атомов. Порядок заполнения оболочек зависит, во-первых, от характера силового поля, которое определяет индивидуальные состояния квазичастиц, и, во-вторых, от смешивания конфигураций. Последнее обычно принимается во внимание лишь для незаполненных оболочек. Наблюдаемые на опыте магические числа общие для нейтронов и протонов (2, 8, 20, 28, 40, 50, 82, 126) отвечают квантовым состояниям квазичастиц, движущихся в прямоугольной или осцилляторной потенциальной яме со спин-орбитальным взаимодействием (именно благодаря ему и возникают числа 28, 40, 82, 126)

Физика микромира и наносекунд

Законы физики едины везде и не зависят от размеров систем где они действуют. И нельзя говорить об аномальных явлениях. Любая аномальность говорит о нашем непонимании происходящих процессов и сути явлений. Только в каждом случае они могут проявляться по разному поскольку в каждой ситуации накладываются свои граничные условия.

Например:

  • В масштабах космоса имеет место хаотическое движение вещества.
  • В галактических масштабах мы имеем упорядоченное движение вещества.
  • При уменьшении рассматриваемых объемов до размера планет движение вещества тоже упорядоченное, но его характер меняется.
  • При рассмотрении объемов газов и жидкостей содержащих группы атомов или молекул движение вещества приобретает хаотический характер (Броуновское движение).
  • В объемах соизмеримых с размером атома и менее, вещество снова приобретает организованное движение.

Поэтому учитывая граничные условия можно наткнуться на совершенно необычные для нашего восприятия явления и процессы.

Как сказал кто-то из старых философов: «Бесконечно малое может быть бесконечно большим». Перефразируя, можно сказать и про вещество, «В бесконечно малом скрыта бесконечно большие...» Вместо многоточия поставить: давление, температура, напряженность электрического или магнитного полей.

И это подтверждают имеющиеся данные о величине энергии молекулярных связей, кулоновских, внутриядерных сил (энергии связи нуклонов в ядре).

Поэтому в микромире возможны сверхвысокие давления, сверх высокие напряженности электрического и магнитного поля и сверхвысокие температуры. Чем хорошо использование возможностей микро объемов (мира), то что на получение этих сверх значений, чаще всего, не нужны огромные энергетические затраты.

Некоторые примеры имеющие признаки ядерного синтеза:

  1. 1. В 1922 году Вендт и Айрион изучали электровзрыв тонкой вольфрамовой проволочки в вакууме . Главным результатом этого эксперимента является появление макроскопического количества гелия – экспериментаторы получали около одного кубического сантиметра газа (при нормальных условиях) за один выстрел, что давало основания им предположить о протекании реакции деления ядра вольфрама.
  1. В эксперименте Араты 2008 года, как и в эксперименте Флейшнера-Понса в 1989-м, производится насыщение кристаллической решётки палладия дейтерием. В результате происходит аномальное выделение тепла, которое у Араты продолжалось 50 часов после прекращения подачи дейтерия. То, что это ядерная реакция, подтверждает наличие гелия в продуктах реакции, которого там не было до того.
  2. Реактор М.И. Солина (г. Екатеринбург) представляет собой обычную вакуумную плавильную печь, где электронным лучом с ускоряющим напряжением 30 кВ расплавлялся цирконий [Солин 2001]. При определённой массе жидкого металла начинались реакции, которые сопровождались аномальными электромагнитными эффектами, выделением энергии, превышающей подводимую, а после анализа образцов вновь застывшего металла там были найдены "чужеродные" химические элементы и странные структурные образования.
  3. В конце 90-х годов Л.И. Уруцкоевым (компания РЭКОМ, дочернее предприятие Курчатовского института) были получены необычные результаты электровзрыва титановой фольги в воде. Здесь открытие было сделано по классической схеме - получались неправдоподобные результаты обычных экспериментов (энергетический выход электровзрыва был слишком большим), и команда исследователей решила разобраться, в чём тут дело. То, что они нашли, их сильно удивило.
  4. Н.Г. Ивойлов (Казанский университет) совместно с Л.И.Уруцкоевым изучал мессбауэровские спектры железной фольги при воздействии на неё "странного излучения".
  5. В Киеве, в частной физической лаборатории "Протон-21" (http://proton-21.com.ua/) под руководством С.В. Адаменко, были получены экспериментальные свидетельства ядерного перерождения металла под воздействием когерентных пучков электронов. Начиная с 2000 года проведены тысячи экспериментов ("выстрелов") на цилиндрических мишенях небольшого (порядка миллиметра) диаметра, в каждом из которых происходит взрыв. внутренней части мишени, а в продуктах взрыва находится практически вся стабильная часть таблицы Менделеева , причём в макроскопических количествах, а также сверхтяжёлые стабильные элементы, наблюдаемые в истории науки впервые .
  6. Холодный ядерный синтез, Колдамасов А.И., 2005, При выявлении эмиссионных свойств некоторых диэлектрических материалов на гидродинамической установке для кавитационных испытаний (см. а/св 2 334405) обнаружено, что при истечении пульсирующей диэлектрической жидкости с частотой пульсации около 1 КГц, через круглое отверстие, на входе жидкости в отверстие возникает электрический заряд большой плотности с потенциалом относительно земли более 1 миллиона вольт. Если использовать в качестве рабочего тела смесь легкой и тяжелой воды без примесей с удельным сопротивлением не ниже 10 31 Ом*м в поле этого заряда можно наблюдать ядерную реакцию, параметры которой легко регулируются. При весовом соотношении легкой и тяжелой воды 100:1 наблюдалось: нейтронный поток от 40 до 50 нейтронов в секунду через сечение 1 см 2 , мощность 3 МЭВ, рентгеновское излучение от 0,9 до 1 мкР/сек при энергии излучения 0,3-0,4 МЭВ, образовывался гелий, тепловыделения. По совокупности наблюдаемых явлений можно заключить, что идут ядерные реакции. В данном конкретном случае диаметр отверстия в дроссельном устройстве был 1,2 мм, длина канала 25 мм, перепад на дроссельном устройстве 40-50 МПа, а расход жидкости через дроссельное устройство 180-200 г/сек. На единицу затраченной мощности выделялось 20 единиц полезной/в виде излучений и тепловыделений. По моему мнению, реакция ядерного синтеза возникает так: Поток жидкости движется по каналу. При приближении атомов дейтерия к заряду, под его воздействием они теряют электроны со своих орбит». Ядра дейтерия, заряженные положительно, под воздействием поля этого заряда отталкиваются в центр отверстия и удерживаются полем кольцевого положительного заряда. Концентрация ядер становится достаточной для того, чтобы происходили их столкновения, а импульс энергии, полученный от положительного заряда, настолько большой, что преодолевается Кулоновский барьер. Ядра сближаются, вступают во взаимодействия, идут ядерные реакции.
  7. В лаборатории «Энергетика и технология структурных переходов» к.т.н. А. В. Вачаев под руководством д.т.н. Н. И. Иванова с 1994 года исследовал возможность обеззараживания стоков производств путем воздействия на них интенсивного плазменного образования. Он работал с веществом в разных агрегатных состояниях. Выявлено полное обеззараживание стоков и обнаружены побочные эффекты. Наиболее удачная силовая установка давала стабильный плазменный факел – плазмоид, при пропускании через который дистиллированной воды в большом количестве образовывалась суспензия металлических порошков, происхождение которых иначе, как процессом холодной ядерной трансмутации объяснить было невозможно. В течение ряда лет новое явление стабильно воспроизводилось при различных модификациях установки, в разных растворах, процесс демонстрировался авторитетным комиссиям из Челябинска и Москвы, раздавались образцы получаемых осадков.
  8. Молодой физик И.С. Филимоненко создал гидролизную энергетическую установку, предназначенную для получения энергии от реакций «теплого» ядерного синтеза, идущих при температуре всего 1150 °C . Топливом для реактора служила тяжелая вода. Реактор представлял собой металлическую трубу диаметром 41 мм и длиной 700 мм, изготовленную из сплава, содержавшего несколько граммов палладия.

    Эта установка появилась на свет в результате исследований, проводившихся в 50-х годах в СССР в рамках государственной программы научно-технического прогресса. В 1989 г. было принято решение воссоздать в подмосковном НПО «Луч» 3 термоэмиссионные гидролизные энергетические установки мощностью по 12.5 кВт каждая. Это решение было мгновенно претворено в жизнь под руководством И.С. Филимоненко. Все три установки были подготовлены к сдаче в опытную эксплуатацию в 1990 г. При этом на каждый киловатт, вырабатываемый энергетическими установками теплого синтеза, приходилось всего 0.7 грамма палладия, на котором, как выяснилось позже, свет клином не сошелся.

  9. Эффект аномального увеличения выхода нейтронов неоднократно наблюдался в опытах по колке дейтериевого льда. В 1986 году академик Б.В. Дерягин с сотрудниками опубликовал статью, в которой были приведены результаты серии экспериментов по разрушению мишеней из тяжелого льда с помощью металлического бойка. В этой работе сообщалось, что при выстреле в мишень из тяжелого льда D 2 O при начальной скорости бойка 100, 200 - м/с регистрировалось 0.4, 0.08 - отсчета нейтронов соответственно. При выстреле в мишень из обычного льда H 2 O регистрировалось всего 0.15 0.06 - отсчета нейтронов. Указанные значения были приведены с учетом поправок, связанных с наличием фонового потока нейтронов.
  10. Ажиотажный взрыв интереса к обсуждаемой проблеме возник только после того, как М. Флейшман и С. Понс на пресс-конференции 23 марта 1989 года сообщили об обнаружении ими нового явления в науке, известного сейчас как холодный ядерный синтез (или синтез при комнатной температуре). Они электролитическим путем насыщали палладий дейтерием (попросту, воспроизвели результаты серии работ И.С. Филимоненко, доступ к которым имел С. Понс) - проводили электролиз в тяжелой воде с палладиевым катодом. При этом наблюдалось выделение избыточного тепла, рождение нейтронов, а также образование трития. В том же году было сообщение об аналогичных результатах, полученных в работе С. Джонса, Е. Палмера, Дж. Цирра и др.
  11. Эксперименты И.Б. Савватимовой
  12. Эксперименты Йосиаки Араты. На глазах у изумленной публики было продемонстрировано выделение энергии и образование гелия, не предусмотренные известными законами физики. В эксперименте Араты - Чжан в специальную ячейку был помещен размолотый до размеров 50 ангстрем порошок, состоящий из палладиевых нанокластеров, диспергированных внутри ZrO 2 – матрицы. Исходный материал был получен посредством отжига аморфного сплава палладия с цирконием Zr 65 Pd 35 . После этого в ячейку под высоким давлением был закачан газообразный дейтерий.

Заключение

В заключение можно сказать:

Чем больше объем области где протекает ядерный синтез (при равной плотности исходного вещества), тем больше энергозатраты на его инициацию и соответственно больше энергетический выход. Не говоря уже о финансовых затратах, которые тоже пропорциональны размерам рабочей области.

Это характерно для «Горячего» термояда. Разработчики планируют получать с его помощью сотни мегаватт мощности.

В то же время существует малозатратный (во всех перечисленных выше направлениях) путь. Его имя L ERN.

Он использует возможности достижения необходимых для ядерного синтеза условий в микрообъемах и получение небольших, но достаточных для удовлетворения многих нужд мощностей (до мегаватта). В некоторых случаях возможно прямое преобразование энергии в электрическую. Правда, последнее время, такие мощности часто просто не интересуют энергетиков, градирни которых отправляют в атмосферу много большие мощности.

Пока нерешенной проблемой «горячего» и некоторых вариантов «холодного» ядерного синтеза остается проблема удаления продуктов распада из рабочей области. Что необходимо, поскольку они снижают концентрацию участвующих в ядерном синтезе исходных веществ. Что приводит к нарушению критерия Лоусона в «горячем» ядерном синтезе и «погасанию» реакции синтеза. В «холодном» ядерном синтезе, в случае циркуляции исходного вещества этого не происходит.

Литература:
№ пп Данные статьи Ссылка
1 Токамак, http://ru.wikipedia.org/wiki/Токамак
2 I-07.pdf *
6 ЭКСПЕРИМЕНТАЛЬНОЕ ОБНАРУЖЕНИЕ "СТРАННОГО" ИЗЛУЧЕНИЯ И ТРАНСФОРМАЦИЯ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ, Л.И. Уруцкоев*, В.И. Ликсонов*, В.Г. Циноев** "РЭКОМ" РНЦ "Курчатовский институт", 28 марта 2000 г http://jre.cplire.ru/jre/mar00/4/text.html
7 Трансмутация вещества по Вачаеву - Гриневу http://rulev-igor.narod.ru/theme_171.html
8 О ПРОЯВЛЕНИЯХ РЕАКЦИИ ХОЛОДНОГО ЯДЕРНОГО СИНТЕЗА В РАЗЛИЧНЫХ СРЕДАХ. Михаил Карпов http://www.sciteclibrary.ru/rus/catalog/pages/8767.html
9 Ядерная физика в Интернете, Магические числа, глава из «Экзотические ядра» Б.С. Ишханов, Э.И. Кэбин http://nuclphys.sinp.msu.ru/exotic/e08.html
10 Демонстрационная методика синтеза элементов из воды в плазме электрического разряда, Паньков В.А., к.т.н.; Кузьмин Б.П., к.т.н. Институт металлургии Уральского отделения РАН http://model.susu.ru/transmutation/20090203.htm
11 Метод А.В. Вачаева – Н.И. Иванова http://model.susu.ru/transmutation/0004.htm
12
  • Перевод

Эта область называется теперь низкоэнергетическими ядерными реакциями, и в ней могут быть достигнуты настоящие результаты – или же она может оказаться упрямой мусорной наукой

Доктор Мартин Флейшман (справа), электрохимик, и Стэнли Понс, председатель химического отдела Университета Юты, отвечают на вопросы комитета по науке и технологиям по поводу их спорной работы в области холодного синтеза, 26 апреля 1989 года.

Говард Дж. Уилк – химик, специалист по синтетической органике, уже долгое время не работает по специальности и живёт в Филадельфии. Как и многие другие исследователи, работавшие в фармацевтической области, он стал жертвой сокращения НИОКР в лекарственной индустрии, происходящего в последние годы, и сейчас занимается подработками, не связанными с наукой. Обладая свободным временем, Уилк отслеживает прогресс компании из Нью-Джерси, Brilliant Light Power (BLP).

Это одна из тех компаний, что разрабатывают процессы, которые можно в общем обозначить как новые технологии добычи энергии. Это движение, по большей части, является воскрешением холодного синтеза – недолго существовавшего в 1980-х явления, связанного с получением ядерного синтеза в простом настольном электролитическом устройстве, которое учёные быстро отмели.

В 1991 году основатель BLP, Рэнделл Л. Миллс , объявил на пресс-конференции в Ланкастере (Пенсильвания) о разработке теории, по которой электрон в водороде может переходить из обычного, основного энергетического состояния, в ранее неизвестные, более устойчивые состояния с более низкой энергией, с высвобождением огромного количества энергии. Миллс назвал этот странный новый тип сжавшегося водорода, " " , и с тех пор работает над разработкой коммерческого устройства, собирающего эту энергию.

Уилк изучил теорию Миллса, прочёл работы и патенты, и провёл свои собственные вычисления для гидрино. Уилк даже посетил демонстрацию на территории BLP в Крэнбюри, Нью-Джерси, где обсудил гидрино с Миллсом. После этого Уилк всё ещё не может решить, является ли Миллс нереальным гением, бредящим учёным, или чем-то средним.

История началась в 1989 году, когда электрохимики Мартин Флейшман и Стэнли Понс сделали удивительное заявление на пресс-конференции Университета Юты о том, что они приручили энергию ядерного синтеза в электролитической ячейке.

Когда исследователи подавали электрический ток на ячейку, по их мнению, атомы дейтерия из тяжёлой воды, проникшие в палладиевый катод, вступали в реакцию синтеза и порождали атомы гелия. Избыточная энергия процесса превращалась в тепло. Флейшман и Понс утверждали, что этот процесс не может быть результатом ни одной известной химической реакции, и присовокупили к нему термин «холодный синтез».

После многих месяцев расследования их загадочных наблюдений, однако, научное сообщество пришло к соглашению о том, что эффект был нестабильным, или вообще отсутствовал, и что в эксперименте были допущены ошибки. Исследование забраковали, а холодный синтез стал синонимом мусорной науки.

Холодный синтез и производство гидрино – это святой Грааль для добычи бесконечной, дешёвой и экологически чистой энергии. Учёных холодный синтез разочаровал. Они хотели в него поверить, но их коллективный разум решил, что это было ошибкой. Частью проблемы было отсутствие общепринятой теории для объяснения предложенного явления – как говорят физики, нельзя верить эксперименту, пока он не подтверждён теорией.

У Миллса есть своя теория, но многие учёные не верят ей и считают гидрино маловероятным. Сообщество отвергло холодный синтез и игнорировало Миллса и его работу. Миллс поступал так же, стараясь не попадать в тень холодного синтеза.

А в это время область холодного синтеза поменяла имя на низкоэнергетические ядерные реакции (НЭЯР) , и существует дальше. Некоторые учёные продолжают попытки объяснить эффект Флейшмана-Понса. Другие отвергли ядерный синтез, но исследуют другие возможные процессы, способные объяснить избыточное тепло. Как и Миллс, их привлекли потенциальные возможности коммерческого применения. В основном их интересует добыча энергии для индустриальных нужд, домашних хозяйств и транспорта.

У небольшого числа компаний, созданных в попытках вывести новые энергетические технологии на рынок, бизнес-модели похожи на модели любого технологического стартапа: определить новую технологию, попытаться запатентовать идею, вызвать интерес инвесторов, получить финансирование, построить прототипы, провести демонстрацию, объявить даты поступления рабочих устройств в продажу. Но в новом энергетическом мире нарушение сроков – это норма. Никто пока ещё не совершил последнего шага с демонстрацией рабочего устройства.

Новая теория

Миллс вырос на ферме в Пенсильвании, получил диплом химика в колледже Франклина и Маршала, учёную степень по медицине в Гарвардском университете, и изучал электротехнику в Массачусетском технологическом институте. Будучи студентом, он начал разрабатывать теорию, которую он назвал "Большой объединённой теорией классической физики ", которая, по его словам, основана на классической физике и предлагает новую модель атомов и молекул, отходящую от основ квантовой физики.

Принято считать, что единственный электрон водорода шныряет вокруг его ядра, находясь на наиболее приемлемой орбите основного состояния. Просто невозможно придвинуть электрон водорода ближе к ядру. Но Миллс утверждает, что это возможно.

Сейчас он работает исследователем в Airbus Defence & Space, и говорит, что не отслеживал деятельность Миллса с 2007 года, поскольку в экспериментах не наблюдалось однозначных признаков избыточной энергии. «Сомневаюсь, что какие-либо более поздние эксперименты прошли научный отбор», сказал Ратке.

«Думаю, что в целом признано, что теория доктора Миллса, выдвинутая им в качестве основы его заявлений, противоречива и не способна выдавать предсказания,- продолжает Ратке. – Можно было бы спросить, "Могли ли мы так удачно наткнуться на источник энергии, который просто работает, следуя неверному теоретическому подходу?" ».

В 1990-х несколько исследователей, включая команду из Исследовательского центра Льюиса, независимо друг от друга сообщили о воспроизведении подхода Миллса и получении избыточного тепла. Команда НАСА в отчёте написала, что «результаты далеки от убедительных», и ничего не говорила про гидрино.

Исследователи предлагали возможные электрохимические процессы для объяснения тепла, включая неравномерность электрохимической ячейки, неизвестные экзотермические химические реакции, рекомбинацию разделённых атомов водорода и кислорода в воде. Те же аргументы приводили и критики экспериментов Флейшмана-Понса. Но команда из НАСА уточнила, что исследователи не должны отбрасывать это явление, просто на случай, если Миллс на что-то наткнулся.

Миллс очень быстро говорит, и способен вечно рассказывать о технических деталях. Кроме предсказания гидрино, Миллс утверждает, что его теория может идеально предсказать местоположение любого электрона в молекуле, используя специальный софт для моделирования молекул, и даже в таких сложных молекулах, как ДНК. С использованием стандартной квантовой теории учёным тяжело предсказать точное поведение чего-либо более сложного, чем атом водорода. Также Миллс утверждает, что его теория объясняет явление расширения Вселенной с ускорением, которое космологи ещё не до конца раскусили.

Кроме того, Миллс говорит, что гидрино появляются при сжигании водорода в звёздах, таких, как наше Солнце, и что их можно обнаружить в спектре звёздного света. Водород считается самым распространённым элементом во вселенной, но Миллс утверждает, что гидрино – это и есть тёмная материя, которую не могут найти во Вселенной. Астрофизики с удивлением воспринимают такие предположения: «Я никогда не слышал о гидрино», говорит Эдвард Колб [Edward W. (Rocky) Kolb ] из Чикагского университета, эксперт по тёмной вселенной .

Миллс сообщил об успешной изоляции и описании гидрино при помощи стандартных спектроскопических методов, таких, как инфракрасный, рамановский, и спектроскопия ядерно-магнитного резонанса. Кроме того, по его словам, гидрино могут вступать в реакции, приводящие к появлению новых типов материалов с «удивительными свойствами». Сюда входят проводники, которые, по словам Миллса, произведут революцию в мире электронных устройств и аккумуляторов.

И хотя его заявления противоречат общественному мнению, идеи Миллса кажутся не такими экзотическими по сравнению с другими необычными компонентами Вселенной. К примеру, мюоний – известная короткоживущая экзотическая сущность, состоящая из антимюона (положительно заряженной частицы, похожей на электрон) и электрона. Химически мюоний ведёт себя как изотоп водорода, но при этом в девять раз его легче.

SunCell, гидриновая топливная ячейка

Вне зависимости от того, в каком месте шкалы правдоподобности располагаются гидрино, Миллс уже десять лет назад рассказывал, что BLP уже продвинулась за пределы научного подтверждения, и её интересует лишь коммерческая сторона вопроса. С годами BLP собрала более $110 млн инвестиций.

Подход BLP к созданию гидрино проявлялся по-разному. В ранних прототипах Миллс с командой использовали вольфрам или никелевые электроды с электролитическим раствором лития или калия. Подводимый ток расщеплял воду на водород и кислород, и при нужных условиях литий или калий играли роль катализатора для поглощения энергии и коллапса электронной орбиты водорода. Энергия, возникающая при переходе из основного атомного состояния в состояние с более низкой энергией, выделялась в виде яркой высокотемпературной плазмы. Связанное с ней тепло затем использовалось для создания пара и питания электрогенератора.

Сейчас в BLP тестируют устройство SunCell , в котором водород (из воды) и оксид-катализатор подаются в сферический углеродный реактор с двумя потоками расплавленного серебра. Электрический ток, подаваемый на серебро, запускает плазменную реакцию с формированием гидрино. Энергия реактора улавливается углеродом, работающим в качестве «радиатора чёрного тела». Когда он раскаляется до тысяч градусов, то испускает энергию в виде видимого света, улавливаемого фотовольтаическими ячейками, преобразующими свет в электричество.

Касательно коммерческих разработок Миллс иногда выглядит, как параноик, а иногда – как практичный бизнесмен. Он зарегистрировал торговую марку «Hydrino». И поскольку его патенты заявляют об изобретении гидрино, BLP заявляют об интеллектуальной собственности на исследования гидрино. В связи с этим BLP запрещает другим экспериментаторам проводить даже базовые исследования гидрино, которые могут подтвердить или опровергнуть их существование, без предварительного подписания соглашения об интеллектуальной собственности. «Мы приглашаем исследователей, мы хотим, чтобы другие занимались этим,- говорит Миллс. – Но нам необходимо защищать нашу технологию».

Вместо этого Миллс назначил уполномоченных валидаторов, утверждающих, что могут подтвердить работоспособность изобретений BLP. Один из них – электротехник из Бакнеллского университета, профессор Питер М. Дженсон [Peter M. Jansson ], которому платят за оценку технологии BLP через его консалтинговую компанию Integrated Systems. Дженсон утверждает, что компенсация его времени «никаким образом не влияет на мои выводы как независимого исследователя научных открытий». Он добавляет, что «опроверг большую часть открытий», которые он изучал.

«Учёные из BLP занимаются настоящей наукой, и пока я не нашёл никаких ошибок в их методах и подходах,- говорит Дженсон. – С годами я видел много устройств в BLP, явно способных производить избыточную энергию в осмысленных количествах. Думаю, что научной общественности понадобится некоторое время для того, чтобы принять и переварить возможность существования низкоэнергетических состояний водорода. По моему мнению, работа доктора Миллса неоспорима». Дженсон добавляет, что BLP сталкивается со сложностями в коммерческом применении технологии, но препятствия носят деловой, а не научный характер.

А пока BLP провела несколько демонстраций своих новых прототипов для инвесторов с 2014 года, и опубликовала видеоролики на своём сайте. Но эти события не дают чётких доказательств того, что SunCell действительно работает.

В июле, после одной из демонстраций, компания объявила, что оценочная стоимость энергии из SunCell настолько мала – от 1% до 10% любой другой известной формы энергии – что компания «собирается предоставить автономные индивидуальные источники питания практически для всех стационарных и мобильных приложений, не привязанных к энергосети или топливным источникам энергии». Иначе говоря, компания планирует построить и выдавать в лизинг SunCells или другие устройства потребителям, взимая ежедневную плату, и позволяя им отвязываться от энергосетей и перестать покупать бензин или соляру, при этом расходуя в разы меньше денег.

«Это конец эры огня, двигателя внутреннего сгорания и централизованных систем подачи энергии,- говорит Миллс. – Наша технология сделает все остальные виды энергетических технологий устаревшими. Проблемы изменения климата будут решены». Он добавляет, что, судя по всему, BLP может начать выпуск продукции, для начала станций мощностью в МВт, к концу 2017 года.

Что в имени?

Несмотря на неопределённость, окружающую Миллса и BLP, их история – лишь часть общей саги о новой энергии. Когда после первоначального заявления Флейшмана-Понса улеглась пыль, два исследователя занялись изучением того, что правильно, а что нет. К ним присоединились десятки соавторов и независимых исследователей.

Многие из этих учёных и инженеров, часто работавших на собственные средства, интересовались не столько коммерческими возможностями, сколько наукой: электрохимией, металлургией, калориметрией, масс-спектрометрией, и ядерной диагностикой. Они продолжали ставить эксперименты, выдававшие избыточное тепло, определяемое как количество энергии, выдаваемое системой, по отношению к энергии, необходимой для её работы. В некоторых случаях сообщалось о ядерных аномалиях, таких, как появлении нейтрино, α-частиц (ядер гелия), изотопах атомов и трансмутациях одних элементов в другие.

Но в конечном итоге большинство исследователей ищут объяснение происходящему, и были бы счастливы, даже если бы скромное количество тепла оказалось бы полезным.

«НЭЯР находятся в экспериментальной фазе, и теоретически пока не поняты», говорит Дэвид Нагель [David J. Nagel ], профессор по электротехнике и информатике в Университете им. Джорджа Вашингтона, и бывший менеджер по исследованиям в Исследовательской лаборатории морфлота. «Некоторые результаты просто необъяснимы. Назовите это холодным синтезом, низкоэнергетическими ядерными реакциями, или как-то ещё – имён достаточно – мы всё равно ничего не знаем об этом. Но нет сомнений, что ядерные реакции можно запускать при помощи химической энергии».

Нагель предпочитает называть явление НЭЯР «решёточными ядерными реакциями», поскольку явление происходит в кристаллических решётках электрода. Изначальное ответвление этой области концентрируется на внедрении дейтерия в палладиевый электрод при помощи подачи большой энергии, поясняет Нагель. Исследователи сообщали, что такие электрохимические системы могут выдавать вплоть до 25 раз больше энергии, чем потребляют.

Другое основное ответвление области использует сочетания никеля и водорода, которое выдаёт до 400 раз больше энергии, чем потребляет. Нагель любит сравнивать эти НЭЯР-технологии с экспериментальным международным термоядерным реактором , основанным на хорошо известной физике – слиянии дейтерия и трития – который строят на юге Франции. Стоимость этого 20-летнего проекта составляет $20 млрд, и его цель в производстве энергии, превышающей потребляемую в 10 раз.

Нагель говорит, что область НЭЯР повсеместно растёт, и главные препятствия – это недостаток финансирования и нестабильные результаты. К примеру, некоторые исследователи сообщают, что для запуска реакции необходимо достичь некоего порогового значения. Она может потребовать минимального количества дейтерия или водорода для запуска, или же электроды необходимо подготовить, придав им кристаллографическую ориентацию и поверхностную морфологию. Последнее требование – обычное для гетерогенных катализаторов, используемых при очистке бензина и на нефтехимических производствах.

Нагель признаёт, что у коммерческой стороны НЭЯР тоже есть проблемы. Разрабатываемые прототипы, по его словам, «довольно грубые», и пока ещё не появилось компании, продемонстрировавшей работающий прототип или заработавшей на этом деньги.

E-Cat от Росси

Одна из ярких попыток поставить НЭЯР на коммерческие рельсы была сделана инженером из компании Leonardo Corp , находящейся в Майами. В 2011 году Росси с коллегами объявили на пресс-конференции в Италии о постройке настольного реактора «Энергетический катализатор» , или E-Cat, производящего избыточную энергию в процессе, где катализатором служит никель. Для обоснования изобретения Росси демонстрировал E-Cat потенциальным инвесторам и СМИ, и назначал независимые проверки .

Росси утверждает, что в его E-Cat происходит самоподдерживающийся процесс, в котором входящий электрический ток запускает синтез водорода и лития в присутствии порошковой смеси никеля, лития и алюмогидрида лития, в результате которого появляется изотоп бериллия. Короткоживущий бериллий распадается на две α-частицы, а избыточная энергия выделяется в виде тепла. Часть никеля превращается в медь. Росси говорит об отсутствии как отходов так и излучения вне аппарата.

Анонс Росси вызвал у учёных то же неприятное чувство, что и холодный синтез. Росси вызывает у многих людей недоверие из-за своего спорного прошлого. В Италии его обвинили в мошенничестве из-за его предыдущих деловых махинаций. Росси говорит, что эти обвинения остались в прошлом и не хочет обсуждать их. Также у него однажды был контракт на создание тепловых установок для ВС США, но поставленные им устройства не работали по спецификациям.

В 2012 году Росси объявил о создании системы мощностью в 1 МВт, пригодной для отопления больших зданий. Также он предполагал, что к 2013 году у него уже будет фабрика, ежегодно производящая миллион установок мощностью в 10 кВт и размером с ноутбук, предназначенных для домашнего использования. Но ни фабрики, ни этих устройств так и не случилось.

В 2014 году Росси продал технологию по лицензии компании Industrial Heat, открытой инвестиционной конторой Cherokee , занимающейся покупкой недвижимости и очищающей старые промзоны для новой застройки. В 2015 году генеральный директор Cherokee, Том Дарден , по образованию юрист и специалист по окружающей среде, назвал Industrial Heat «источником финансирования для изобретателей НЭЯР».

Дарден говорит, что Cherokee запустила Industrial Heat, поскольку в инвестиционной компании верят, что технология НЭЯР достойна исследований. «Мы были готовы ошибаться, мы готовы были вложить время и ресурсы, чтобы узнать, может ли эта область оказаться полезной в нашей миссии по предотвращению загрязнения [окружающей среды]», говорит он.

А в это время Industrial Heat и Leonardo поругались, и теперь судятся друг с другом по поводу нарушений соглашения. Росси получил бы $100 млн, если бы годовой тест его системы мощностью в 1 МВт оказался успешным. Росси говорит, что тест закончен, но в Industrial Heat так не считают, и опасаются, что устройство не работает.

Нагель говорит, что E-Cat привнёс в область НЭЯР энтузиазм и надежду. В 2012 году он утверждал, что, по его мнению, Росси не был мошенником, «но мне не нравятся некоторые его подходы к тестированию». Нагель считал, что Росси должен был действовать более аккуратно и прозрачно. Но в то время Нагель сам считал, что устройства на принципе НЭЯР появятся в продаже к 2013 году.

Росси продолжает исследования и объявил о разработках других прототипов. Но он мало что рассказывает о своей работе. Он говорит, что устройства мощностью в 1 МВт уже находятся в производстве, и он получил «необходимые сертификаты» для их продажи. Домашние устройства, по его словам, пока ещё ожидают сертификации.

Нагель говорит, что после спада радостного настроения, связанного с объявлениями Росси, к НЭЯР вернулся статус-кво. Доступность коммерческих генераторов НЭЯР отодвинулась на несколько лет. И даже если устройство выдержит проблемы воспроизводимости и будет полезным, его разработчикам предстоит жестокая битва с регуляторами и принятием его пользователями.

Но он сохраняет оптимизм. «НЭЯР могут стать коммерчески доступными ещё до их полного понимания, как было с рентгеном», говорит он. Он уже оборудовал лабораторию в Университете им. Джорджа Вашингтона для новых экспериментов с никелем и водородом.

Научные наследия

Многие исследователи, продолжающие работать над НЭЯР – это уже состоявшиеся учёные на пенсии. Для них это непросто, поскольку годами их работы возвращали непросмотренными из мейнстримовых журналов, а их предложения о докладах на научных конференциях не принимали. Они всё сильнее волнуются по поводу статуса этой области исследований, поскольку их время истекает. Им хочется либо зафиксировать своё наследие в научной истории НЭЯР, либо хотя бы успокоиться тем, что их инстинкты их не подвели.

«Очень неудачно вышло, когда холодный синтез впервые был опубликован в 1989 году как новый источник энергии синтеза, а не просто как некая новая научная диковина», говорит электрохимик Мелвин Майлс . «Возможно, исследования могли бы идти как обычно, с более аккуратным и точным изучением».

Бывший исследователь в Центре воздушно-морских исследований на базе Чайна Лейк, Майлс иногда работал с Флейшманом, умершим в 2012 году. Майлс считает, что Флейшман и Понс были правы. Но и сегодня он не знает, как можно сделать коммерческий источник энергии для системы из палладия и дейтерия, несмотря на множество экспериментов, в ходе которых было получено избыточное тепло, коррелирующее с получением гелия.

«Зачем кто-то будет продолжать исследования или интересоваться темой, которую 27 лет назад объявили ошибкой? – спрашивает Майлс. – Я убеждён, что холодный синтез когда-нибудь признают ещё одним важным открытием, которое долго принимали, и появится теоретическая платформа, объясняющая результаты экспериментов».

Ядерный физик Людвик Ковальский, почётный профессор из Монтклэрского государственного университета соглашается, что холодный синтез стал жертвой неудачного старта. «Я достаточно стар, чтобы помнить эффект, произведённый первым объявлением на научное сообщество и на общественность», говорит Ковальский. Временами он сотрудничал с исследователями НЭЯР, «но мои три попытки подтвердить сенсационные заявления были неудачными».

Ковальский считает, что первый позор, заработанный исследованием, вылился в бОльшую проблему, неподобающую для научного метода . Справедливы или нет исследователи НЭЯР, Ковальский всё ещё считает, что стоит докопаться до чёткого вердикта «да» или «нет». Но его не найти до тех пор, пока исследователей холодного синтеза считают «эксцентричными псевдоучёными», говорит Ковальский. «Прогресс невозможен, и никто не выигрывает от того, что результаты честных исследований не публикуются, и никто не проверяет их независимо в других лабораториях».

Время покажет

Даже если Ковальский получит однозначный ответ на свой вопрос и заявления исследователей НЭЯР подтвердятся, дорога к коммерциализации технологии будет полна препятствий. Многие стартапы, даже с надёжной технологией, проваливаются по причинам, не связанным с наукой: капитализация, движение ликвидности, стоимость, производство, страховка, неконкурентноспособные цены, и т.п.

Возьмём, к примеру, Sun Catalytix. Компания вышла из MIT при поддержке твёрдой науки, но пала жертвой коммерческих атак до того, как вышла на рынок. Она была создана для коммерциализации искусственного фотосинтеза, разработанного химиком Дэниелом Носерой [Daniel G. Nocera ], работающим ныне в Гарварде, для эффективного преобразования воды в водородное топливо при помощи солнечного света и недорогого катализатора.

Носера мечтал , что полученный таким образом водород сможет питать простые топливные ячейки и давать энергию домам и деревням в отсталых регионах мира, не имеющих доступа к энергосетям, и давая им возможность наслаждаться современными удобствами, улучшающими уровень жизни. Но на разработку потребовалось гораздо больше денег и времени, чем казалось сначала. Через четыре года Sun Catalytix бросила попытки коммерциализации технологии, занялась изготовлением потоковых батарей , и потом в 2014 году её купила Lockheed Martin.

Неизвестно, тормозят ли развитие компаний, занимающихся НЭЯР, такие же препятствия. К примеру, Уилк, органический химик, следивший за прогрессом Миллса, озабочен желанием понять, основаны ли попытки коммерциализации BLP на чем-то реальном. Ему просто нужно знать, существует ли гидрино.

В 2014 Уилк спросил Миллса, изолировал ли тот гидрино, и хотя Миллс уже писал в работах и патентах, что ему это удалось, он ответил, что такого ещё не было, и что это было бы «очень большой задачей». Но Уилку кажется иное. Если процесс создаёт литры гидринного газа, это должно быть очевидным. «Покажите нам гидрино!», требует Уилк.

Уилк говорит, что мир Миллса, и вместе с ним мир других людей, занимающихся НЭЯР, напоминает ему один из парадоксов Зенона, который говорит об иллюзорности движения. «Каждый год они преодолевают половину расстояния до коммерциализации, но доберутся ли они до неё когда-нибудь?». Уилк придумал четыре объяснения для BLP: расчёты Миллса верны; это мошенничество; это плохая наука; это патологическая наука, как называл её нобелевский лауреат по физике Ирвинг Ленгмюр.

Ленгмюр изобрёл этот термин более 50 лет назад для описания психологического процесса, в котором учёный подсознательно отдаляется от научного метода и так погружается в своё занятие, что вырабатывает невозможность объективно смотреть на вещи и видеть, что реально, а что нет. Патологическая наука – это «наука о вещах, не таких, какими они кажутся», говорил Ленгмюр. В некоторых случаях она развивается в таких областях, как холодный синтез/НЭЯР, и никак не сдаётся, несмотря на то, что признаётся ложной большинством учёных.

«Надеюсь, что они правы», говорит Уилк про Миллса и BLP. «В самом деле. Я не хочу их опровергать, я просто ищу истину». Но если бы «свиньи умели летать», как говорит Уилкс, он бы принял их данные, теорию и другие предсказания, следующие из неё. Но он никогда не был верующим. «Думаю, если бы гидрино существовали, их бы обнаружили в других лабораториях или в природе много лет назад».

Все обсуждения холодного синтеза и НЭЯР заканчиваются именно так: они всегда приходят к тому, что никто не выпустил на рынок работающего устройства, и ни один из прототипов в ближайшем будущем нельзя будет поставить на коммерческие рельсы. Так что время будет последним судьёй.

Теги:

  • холодный синтез
  • нэяр
  • низкоэнергетические ядерные реакции
  • suncell
  • росси
  • e-cat
Добавить метки

Невероятно оптимистический прогноз на недалекое будущее делает портал «Хорошие Новости России». Причём он касается не только нашей страны, а и в равной степени всего остального мира:

Революции бывают общественно-политические (социалистические, буржуазные, цветные), а бывают научно-технические (НТР). Энергетическая революция - это разновидность НТР.

Революция (лат. revolutio) - это переворот, превращение - радикальное, коренное, глубокое, качественное изменение, скачок в развитии.

Что же такое энергетическая революция, на пороге которой стоит наш мир?

Какой переворот в области энергетики нас ожидает? Какое качественное изменение? В чём будет заключаться скачок в развитии и за счет чего он произойдет?

Все современные виды энергетики обладают разными недостатками, большинство из которых заключается либо в высокой стоимости (установки, подключения, киловатта), либо в низкой доступности.

Каждый, кто сталкивался с подключением к энергосетям, знает, что проблем хватает и доступность оставляет желать лучшего. Да и стоимость тоже.

Газ - один из самых дешевых и экологически чистых видов топлива - проведен не везде. Тянуть газопровод в отдаленные населенные пункты очень накладно. Сжиженный газ - дорогой. Газовая котельная тоже стоит немало. Купить газовый баллон и подключить к плите нетрудно, однако отопление и обеспечение дома электроэнергией покупкой баллона не решается. Кроме этого, газ взрывоопасен.

Дизель, мазут - для использования в котельных (генераторах) получается еще дороже, чем газ. Для использования в личных (подсобных) хозяйствах можно поставить генератор, но электроэнергия на выходе получится довольно дорогой. И генератор тоже денег стоит.

Гидроэнергетика требует строительства ГЭС - это большие капитальные затраты. И эксплуатация тоже далеко не бесплатная. И не везде доступно. И побочные эффекты для экологии. В общем, далеко не идеально. Для малой генерации вообще не годится.

Атомная энергетика сопряжена с риском аварий (Чернобыль, Фукусима) и как бы нас не убеждали, что современные АЭС абсолютно надежны, но жить по соседству с атомным энергоблоком все равно не слишком уютно. Кроме этого, АЭС генерируют отработанное топливо, а оно радиоактивное, его нужно где-то складировать, желательно в безопасном месте, чтобы не возникло утечки. И строительство АЭС - это опять же высокие капитальные затраты. Малых АЭС не существует и не может быть, хотя бы из соображений безопасности.

Солнечная энергетика - дорогая и не везде эффективная исходя из числа солнечных дней в году. Для обеспечения энергией отдаленных поселков и отдельно стоящих домиков в солнечных регионах годится, однако там, где нужна большая мощность, да еще и солнечных дней мало - не подходит.

Ветрогенерация - постепенно развивается, размеры и мощность генераторов растут, стоимость энергии снижается, но назвать этот вид энергетики панацеей тоже нельзя. Не очень дешево и не очень стабильно. И не везде применимо.

Идеального источника энергии пока нет

Одни дорогие, другие не везде доступны, третьи опасны. И все очень ограничены по мощности, не позволяют произвольно наращивать потребление по мере необходимости - в АЭС нельзя воткнуть лишние ТВЭЛы сверх проектной мощности, газопровод нельзя расширить, на ГЭС нельзя добавить пару дополнительных турбин.

В общем, сплошные ограничения...

Яркий пример недостатков современной энергетики - история с Крымом, когда полуостров столкнулся с дефицитом энергии, который не удалось быстро восполнить. Генераторов не хватало, быстро построить газовую электростанцию не представлялось возможным, даже протянуть кабель через пролив - и то заняло существенное время.

И не только доступность энергии оставляет желать лучшего, но и стоимость тоже.

Энергия составляет значительную часть стоимости всех товаров и услуг, потому что на всех этапах производства и доставки используется энергия и топливо (энергоноситель).

Промышленное оборудование работает на электричестве, печи - на газе или опять же на электричестве, в стоимости ж/д транспортировки тоже заложена стоимость электричества. В стоимости услуг автотранспорта - стоимость топлива.

Счета за ЖКХ почти целиком состоят из стоимости энергии - свет, горячая вода, отопление - это все энергия. И даже стоимость холодной воды зависит от стоимости энергии, потому что воду качают электронасосы.

Стоимость цемента (которая составляет значительную часть стоимости жилья) тоже существенно зависит от стоимости электроэнергии и топлива. Стоимость алюминия (одного из основных современных материалов) почти полностью состоит из стоимости электроэнергии, потому что алюминий производится методом электролиза.

Доля энергии и топлива в стоимости различных товаров и услуг сильно варьируется, но почти везде она достаточно высока, если учесть затраты энергии на всех этапах производства, начиная от добычи, очистки и переработки сырья.

Поэтому и хочется, чтобы энергия была и дешевле и доступнее.

Хочется, чтобы масштабируемость была высокой - от киловатт до гигаватт, чтобы можно было и крупный город обеспечить дешевой энергией и малый поселок, и даже отдельно стоящий дом. И чтобы везде работало, независимо от количества солнечных дней в году, наличия ветра, реки, рельефа местности и других природных факторов. И чтобы топливо было доступным. И чтобы экологически чисто.

Но возможно ли это?

Существует ли такой источник энергии, чтобы отвечал всем перечисленным критериям (доступность, масштабируемость, низкая стоимость установки и эксплуатации, экологичность)?

Сегодня на рынке такого источника нет.

Все существующие источники энергии обладают теми или иными недостатками и ограничениями - либо сравнительно дешевая установка, но дорогая энергия, либо высокие капитальные затраты, либо экологические риски, либо иные ограничения.

В ближайшем будущем появится новый источник энергии

Источник, который будет обладать и высокой масштабируемостью (от киловатта до гигаватта), и возможностью повсеместной установки (от крупных городов и промышленных объектов до малых поселков и отдельных домов), и экологичностью, и низкой стоимостью получаемой энергии (в несколько раз или даже в несколько десятков раз дешевле всех существующих).

Энергия, которая будет доступнее в разы и десятки раз как по стоимости, так и по возможностям установки в любой местности - в горах, на крайнем севере, в отдаленных поселках, на островах и полуостровах.

Каждое предприятие сможет позволить себе установку собственной энергетической установки, выдающей более дешевую энергию, чем сегодня доступна в любой сети.

Для строительства поселка или нового жилмассива не нужно будет добиваться отведения мощности от существующих ГЭС, ТЭЦ или АЭС - можно будет установить собственный энергоблок.

Многократное снижение стоимости энергии приведет к изменению в ценообразовании на все товары и услуги, сделает доступными новые материалы и технологии, применять которые сегодня невыгодно из-за высоких энергозатрат.

Энергетическая революция повлечет за собой большие изменения во всех других сферах, возможно тоже революционные.

Вслед за энергетикой будет меняться структура экономики, а вслед за экономикой и общественно-политическое устройство.

Но что за новый источник энергии приведет к мировой энергетической революции и всем вытекающим из этого изменениям?

Откуда возьмутся дешевые киловатты, мегаватты и гигаватты в любом месте и количестве, да еще и с условием экологической чистоты?

Энергетика ядерного синтеза

Существующая сегодня атомная энергетика основана на реакциях деления тяжелых радиоактивных элементов (в действующих АЭС используются изотопы урана). Именно этим вызвана высокая сложность и стоимость атомных электростанций, тяжелые последствия аварий, а также проблемы с отработанным топливом.

Радиоактивное топливо сложно и дорого производить, использовать и утилизировать. Высокие издержки и риски влияют на стоимость получаемой энергии и не позволяют строить малые АЭС везде и всюду, передавая их в эксплуатацию неподготовленному и неподконтрольному персоналу.

Однако наряду с реакциями деления существуют реакции синтеза, которые дают значительно больший выход энергии и при этом на выходе не образуется радиоактивных изотопов, а значит не возникает проблем с отработанным топливом.

Продукты ядерного синтеза - это почти всегда стабильные изотопы, которые ничем не отличаются от тех, что существуют в природе. Существуют, конечно, реакции синтеза с выходом радиоактивных изотопов, но никто не заставляет осуществлять именно их.

Про перспективы энергетики ядерного синтеза говорили и писали давно и много.

Энергетическую революцию, связанную с освоением технологии ядерного синтеза ждали еще в конце прошлого века - ждали, но так и не дождались.

Примерно полвека назад начались попытки запустить ядерный синтез и обеспечить за счет этого весь мир чистой и практически неисчерпаемой энергией (1 грамм синтезируемого вещества дает больше энергии, чем 100 литров бензина при том, что топливом в реакциях синтеза потенциально может быть все, что угодно, в том числе обычная вода).

Однако попытки запустить реакции синтеза на практике натолкнулись на кулоновский барьер, преодолеть который оказалось очень непросто.

Кулоновский барьер - это сила отталкивания атомных ядер, которая препятствует их слиянию (синтезу). Именно из-за кулоновского барьера ядерный синтез не идет кругом и всюду сам собой. Не будь этого барьера - все вещество давно бы превратилось в железо и ряд других тяжелых элементов.

Из-за того же кулоновского барьера термоядерный взрыв не может вызвать цепную реакцию, в ходе которой сгорела бы вся планета. При термоядерном взрыве ядерный синтез идет только в том объеме вещества, которое удалось "поджечь" в момент взрыва первой ступени, которой служит обычный ядерный заряд деления.

На протяжении полувека, с момента появления идей об использовании реакций ядерного синтеза в народном хозяйстве, попытки создать энергетику синтеза стабильно разбивались об этот самый кулоновский барьер.

Строились (и продолжают строиться) токамаки (разновидность реакторов синтеза) один больше другого, однако положительного выхода энергии, который превышал бы затраты на разогрев и удержание высокотемпературной плазмы внутри магнитного бублика (тора, отсюда и название - токамак, тороидальная магнитная катушка) - как не было, так и нет. И есть основания полагать, что никогда не будет.

Но если все попытки запустить энергетически эффективный ядерный синтез до сих пор разбивались о кулоновский барьер, если токамаки до сих пор не дали положительный выход энергии и неизвестно, дадут ли его когда-либо - откуда прогноз о скорой энергетической революции?

LENR или НЭЯР - низкоэнергетический ядерный синтез

Наряду с попытками строительства токамаков и запуска ядерного синтеза в высокотемпературной плазме существует направление, которое часто называют холодным синтезом, хотя это не совсем правильный термин, который многих вводит в заблуждение.

Суть в том, что ядерный синтез может идти не только в высокотемпературной плазме, но и при других условиях, в частности при мощном электрическом разряде, в котором ядра атомов приобретают достаточную для синтеза энергию (поэтому называть этот синтез холодным некорректно, сообщаемая частицам энергия в данном случае не меньше, чем в высокотемпературной плазме). Были обнаружены и другие условия, при которых идет «теплый» ядерный синтез - при температурах «ниже плазменной, но выше комнатной».

Долгое время академическая наука не признавала саму возможность ядерного синтеза в каких-либо иных условиях, чем высокотемпературная плазма. Исключение делалось для «мезонного катализа», при котором синтез не требовал разогрева вещества, однако не был энергетически выгоден, потому что затраты на получение мезонов выше, чем выход энергии синтеза.

Ряд ученых, которые вели исследования в области низкоэнергетического синтеза (LENR), подверглись резкой критике со стороны академического сообщества, объявлялись «алхимиками» и некоторые даже оказались уволены из своих институтов « за ересь» .

Но сколько ни утверждали «ортодоксы от физики», что ядерный синтез не может идти при низких энергиях, потому что не может и баста - исследования в этой области продолжались, к ним присоединялись новые научные центры, увеличивалось финансирование, экспериментальная база росла и... в конце концов выяснилось, что невозможное все-таки возможно и ядерный синтез идет не только в высокотемпературной плазме, но и при других условиях и состояниях вещества.

За последние годы ряд экспериментов по осуществлению «теплого» синтеза и синтеза в электрических разрядах удалось повторить разным независимым исследовательским группам, добиться устойчивого воспроизводимого эффекта и, что самое главное - получить положительный выход энергии, который оказался больше, чем при реакциях деления урана (как собственно и должно быть, потому что реакции синтеза энергетически мощнее реакций деления).

Кроме этого, было разработано сразу несколько теорий, объясняющих, как именно ядрам атомов удается преодолеть упрямый кулоновский барьер и почему это происходит при строго определенных условиях.

Единого мнения в научном сообществе, какая из теорий верна, пока еще нет. Остаются и те, кто продолжает упрямо повторять «этого не может быть, потому что не может быть никогда». Но признание фактов неизбежно, равно как и доводка теоретической базы до единого признанного научным сообществом состояния.

Кулоновский барьер оказался преодолен

Кулоновский барьер преодолен во всех смыслах и теперь появление ядерных реакторов, работающих на принципах синтеза - преимущественно инженерная задача и вопрос времени.

Конечно, до появления промышленных реакторов ядерного синтеза может пройти еще много лет. Может быть даже несколько десятилетий. Путь от экспериментальной установки до промышленного образца не всегда бывает простым. И наука должна прийти к единому мнению по физическим основам данных реакций, без этого процесс внедрения будет сильно буксовать.

В качестве примера можно вспомнить историю вертолетостроения. Первые экспериментальные вертолеты появились еще в начале 20-го века, но они были опасны, нестабильны и неэффективны. Только спустя несколько десятилетий, после Второй мировой, удалось разработать надежные и по-настоящему эффективные вертолеты, поставить их выпуск на поток и превратить из экспериментальных образцов в промышленные.

Вероятно такой же путь пройдут и реакторы ядерного синтеза - от экспериментальных установок, действующих сегодня, до промышленного оборудования, которое начнет выпускаться через 10-20 лет.

Но самое главное уже случилось - экспериментальные образцы реакторов синтеза созданы, исследователи добились устойчивого воспроизводимого эффекта и положительного выхода энергии, превышающего выход энергии от ТВЭЛов, используемых в современных АЭС.

Опытные образцы позволяют сделать вывод, что реакторы синтеза будут очень масштабируемыми - минимальная эффективная мощность будет начинаться с нескольких киловатт, а энергоблок этой мощности может быть размером с системный блок компьютера. Стоимость установки в расчете на киловатт мощности будет ниже, чем у любых существующих генераторов. Стоимость топлива (заряда) будет и вовсе ничтожно мала ввиду использования повсеместно распространенного вещества.

Перечислять исследователей и опытные установки, на которых получен эффект ядерного синтеза, в данном материале не буду, потому что они заслуживают отдельного обзора, который подготовлю и выложу дополнительно.

Пока укажу лишь страны, в которых проводились исследования и были получены положительные результаты - это Россия, Япония, Италия и США. При этом первая установка ядерного синтеза, судя по всему, была создана еще в СССР, однако проект не получил своевременного развития и был закрыт.

Особенно важно, что эффект ядерного синтеза удалось воспроизвести ученым из Китая, а если в Китае что-то удалось воспроизвести, то появление промышленных образцов уже точно не остановить.

Энергетика ядерного синтеза из фантастики превращается в реальность.

Мир стоит на пороге энергетической революции, которую уже не отменить.

Не отменить и все другие революции, которые последуют за энергетической, потому что энергия лежит в основе всего - производства, транспорта, жизнеобеспечения, в основе всей экономики. А экономика лежит в основе политики и общественного устройства. Поэтому вслед за энергетической революцией последуют и все остальные, вплоть до общественно-политических.

Рис. 25. Положение rp -процесса относительно линииβ стабильности.

Процесс, который временами связан с р -процессом, естьrp - процесс – быстрый процесс захвата протона. Этот процесс создаёт протонами обогащённые ядра с Z =7-26. Он включает серию (р,γ) иβ + - распадов, которые характерны для р-обогащённых ядер. Процесс стартует как «выпадение» из CNO цикла. Это - боковая цепь CNO-цикла, создающая р-обогащённые ядра, такие как21 Na

и 19 Ne. Эти ядра создают основу для дальнейшего захвата

нейтронов, приводя к пути нуклеосинтеза, показанному на Рис. 25 . rp -процесс создаёт малое число ядер сА <100. Процесс следует по пути, аналогичному r -процессу, но на протон-обогащённой стороне стабильности. В настоящее время источником протонов

для этого процесса являются некоторые двойные звёзды. Заметим, что этот процесс временами близок к линии β стабильности, приближаясь к протоновой линии, когда ядро становится тяжелее.

6. ПРОБЛЕМА СОЛНЕЧНОГО НЕЙТРИНО

Многие ядерные реакции, обеспечивающие звёзды энергией, сопровождаются эмиссией нейтрино. Ввиду малого сечения поглощения нейтрино веществом (σ 10-44 см2 ), они практически не поглощаются Солнцем и другими звёздами. (Эти потери нейтрино соответствуют потери 2% энергии Солнца). Поэтому нейтрино – окно внутрь звезды. В тоже время, малое сечение поглощения затрудняет регистрацию нейтрино, поскольку практически все нейтрино проходят планету Земля без поглощения.

Поэтому существует проблема солнечного нейтрино. Табл. 4. Предсказанные потоки солнечного нейтрино.

Источник

Поток (част/с/см2 )

5,94x1010

1,40x108

7,88x103

4,86x107

5,82x106

5,71x108

5,03x108

5,91x106

6.1 Ожидаемые источники солнечного нейтрино, энергии и потоки

В виду своей близости к нашей планете, Солнце – основной источник достигающего Земли нейтрино.

Солнце испускает 1,8х1038 нейтрино/сек, которые через 8 мин достигают поверхности Земли с плотностью потока 6,4х1010 нейтрино/с/см2 . Предсказания стандартной солнечной модели для потоков нейтрино на поверхности Земли для различных ядерных реакций представлены вТабл. 4, а для распределения энергий - наРис. 26 . Каждая ядерная реакция имеет

характеристическое распределение энергии.

Рис. 25. Предсказание потоков нейтрино от различных ядерных реакций на Солнце. Области энергий, в которых детекторы чувствительны к нейтрино, показаны наверху.

13N → 13C+ β ++ ν e 15O → 15N+ β ++ ν e 17F → 17O+ β ++ ν e

Источник, помеченный «рр », вТабл. 4 иРис. 26 отражает реакцию

p+p→ d+e+ +ν e (65)

и является основной реакцией, производящей одно нейтрино на каждое синтезированное ядро 4 Не. «рер » источником является реакция

p+p+e- → d+ν e , (66)

которая производит моноэнергетические нейтрино, тогда как «hep» означает реакцию: p+3 He→ 4 He+e+ +ν e (67)

Эта последняя реакция производит нейтрино наивысшей энергии с максимальной энергией 18,77 МэВ (из-за высокого значенияQ реакции). Интенсивность этого источника в 107 раз меньше рр-источника. «7 Ве» источник означает рр -цепь реакции распада электронным захватом

в котором заселено первое возбуждённое состояние 8 Ве (при 3,04 МэВ). Слабые источники «13 N», «15 O» и «17 F» означаютβ + распады, происходящие в CNO цикле:

6.2 Детектирование нейтрино

Как уже упоминалось, детектирование слабо взаимодействующих нейтрино затруднено ввиду низкого значения сечения взаимодействия. Для преодоления этого препятствия предложено два типа детекторов: радиохимические детекторы и детекторы Черенкова. Радиохимические детекторы регистрируют продукты вызванных нейтрино реакций, тогда как Черенковские детекторы наблюдают рассеяние нейтрино. Так, в пещере Южной Дакоты на 1500 м ниже поверхности земли помещён массивный радиохимический детектор, содержащий 100000 галлонов очищенной жидкости, С2 Сl4 . Очищенная жидкость весила 610 тонн (объём 10 железнодорожных цистерн). В детекторе происходит следующая реакция:

ν e +37 Cl→ 37 Ar+e-

Продукт реакции 37 Ar распадается электронным захватом с Т=35 дней. После очистки жидкость экспонируется солнечным нейтрино определённый период времени, образовавшийся37 Ar вымывается из детектора потоком газообразного гелия и поступает в пропорциональный счётчик, который детектирует 2,8 электроны Оже, образовавшиеся при электронном захвате. Детектируемая реакция имеет порог 0,813 МэВ, т.е. детектор чувствителен к8 В, hep, pep и7 Be (распад основного состояния) нейтрино. Здесь наиболее важным является регистрация8 В. Обычно 3 атома37 Аr образуются за неделю и их надо изолировать от 1010 атомов жидкости. Детектор помещён глубоко под землёй и защищён от космической радиации.

Другие детекторы основаны на реакции

ν e +71 Ga→ 71 Ge+e-

Эти детекторы имеют порог 0,232 МэВ и могут быть использованы для прямого детектирования доминирующих рр нейтрино Солнца. Галлий присутствует как раствор GaCl3 .71 Ge собирают, промывая детектор азотом и конвертируя Ge в GeH4 перед счётом. Эти детекторы используют 30-100 тонн галлия и потребляют значительную долю ежегодного производства галлия.

Черенковские детекторы работают на эффекте рассеяния нейтрино заряженными частицами. После столкновения с нейтрино, выбитый электрон испускает черенковское излучение, которое можно зарегистрировать сцинтилляционными детекторами. Первый из таких детекторов был помещён в шахту Камиока в Японии. Супер Камиока содержал 50000 тонн высокочистой воды. Детектируемая реакция в этом случае – реакция рассеяния ν +e- →ν +e- , а порог детектирования 8 МэВ, что позволяет регистрировать8 В нейтрино.

Рис. 27. Сравнение предсказаний стандартной солнечной модели и экспериментальных измерений.

Канадский SNO детектор был смонтирован в никелевой шахте на глубине 2 км и содержал 1000 тонн тяжёлой воды (D2 O). В дополнении к нейтриноэлектронному рассеянию, этот детектор способен использовать ядерные реакции на дейтерии:

ν e+d→ 2p+e- (72)ν +d→ n+p+ν (73)

Последняя реакция может быть использована для регистрации всех типов нейтрино, ν е ,ν μ иν τ , тогда как первая реакция чувствительна только к электронным нейтрино. Набор протекающих в детекторе реакций можно использовать для наблюдения осцилляций нейтрино. В последней реакции, испущенный нейтрон детектируется (n ,γ) реакцией, в которой γ лучи регистрируются сцинтилляционным детектором (Тяжёловодный детектор окружён 7000 тон обычной воды, чтобы предохранить детектор от нейтронов, связанных с радиоактивностью стен шахты). Канадский детектор потребовал разработки новых методов глубокой очистки воды, т.к. чистота воды требовала содержание урана или тория менее 10 атомов на 1015 молекул воды.

6.3 Проблема солнечного нейтрино

Проблема солнечного нейтрино возникла из того факта, что детекторы зарегистрировали только 1/3 от ожидавшегося по стандартной модели солнечного нейтрино, которая предполагает, что 98,5% энергии Солнца происходит из рр -цепочки и 1,5 из CNO цикла.

Рис. 28 . Энергетические спектры галактических космических лучей, GCR.

Такое расхождение указывает, что или модель Солнца неверна или есть фундаментальные ошибки в использованной ядерной физике.

Проблема солнечного нейтрино заключается в ошибочных идеях о фундаментальной структуре вещества, задаваемых стандартной моделью. Стандартная модель предсказывает, что три типа нейтрино не имеют массы и что, будучи созданными, они продолжают существовать в неизменном виде всё остальное время. Основная идея альтернативной модели – модели осцилляции нейтрино – состоит в утверждении, что пока нейтрино выходят из Солнца, они трансформируются из электронных в мюонные нейтрино и обратно. Эти осцилляции

возможны, если нейтрино имеют массу и эта масса у электронного и мюонного нейтрино различны. Эти осцилляции усиливаются нейтрон-электронными взаимодействиями в Солнце. Полагают, что

масса τнейтрино>масса μ нейтрино>масса электронного нейтрино. Верхний предел этих масс

Рис. 29 . Относительная (по кремнию) распространённость элементов в солнечной системе и в космических лучах.

Нейтринные осцилляции - превращения нейтрино (электронного, мюонного или таонного) в нейтрино другого сорта (поколения), или же в антинейтрино. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы собственного времени. Наличие нейтринных осцилляций важно для решения проблемы солнечных нейтрино. Предполагается, что такие превращения - следствие наличия у нейтрино массы покоя или (для случая превращений нейтрино↔антинейтрино) несохранения лептонного заряда при высоких энергиях. Стандартная модель в первоначальной версии не описывает массы нейтрино и их осцилляции, однако они могут быть включены в эту теорию с помощью сравнительно небольшой модификации - включении в общий лагранжиан массового члена и PMNS-матрицы смешивания нейтрино.

Прямое доказательство осцилляций нейтрино пришло из наблюдений черенковского свечения. SNO детектор нашёл одну треть ожидавшегося числа электронных нейтрино, приходящих из Солнца в согласии с предыдущими данными, полученными радиохимическими детекторами. Японский детектор, который чувствителен преимущественно к электронным нейтрино, но имеет

чувствительность и к другим типам нейтрино, нашёл половину от потока нейтрино, ожидавшегося из

Так как между атомными ядрами на малых расстояниях действуют ядерные силы притяжения, при сближении двух ядер возможно их слияние, т. е. синтез более тяжелого ядра. Все атомные ядра имеют положительный электрический заряд и, следовательно, на больших расстояниях отталкиваются друг от друга. Для того чтобы ядра могли сблизиться и вступить в ядерную реакцию синтеза, они должны обладать достаточной кинетической энергией для преодоления взаимного электрического отталкивания, которое тем больше, чем больше заряд ядра. Поэтому проще всего осуществляется синтез легких ядер с малым электрическим зарядом. В лаборатории реакции синтеза можно наблюдать, обстреливая мишень быстрыми ядрами, разогнанными в специальном ускорителе (см. Ускорители заряженных частиц). В природе реакции синтеза происходят в очень горячем веществе, например в недрах звезд, в том числе в центре Солнца, где температура 14 млн градусов и энергия теплового движения некоторых самых быстрых частиц достаточна для преодоления электрического отталкивания. Ядерный синтез, происходящий в разогретом веществе, называют термоядерным.

Термоядерные реакции, идущие в недрах звезд, играют очень важную роль в эволюции Вселенной. Они - источник ядер химических элементов, которые синтезируются из водорода в звездах. Они - источник энергии звезд. Основным источником энергии Солнца являются реакции так называемого протон-протонного цикла, в результате которых из 4 протонов рождается ядро гелия. Выделяющаяся при синтезе энергия уносится образующимися ядрами, квантами электромагнитного излучения, нейтронами и нейтрино. Наблюдая поток нейтрино, идущий от Солнца, можно установить, какие ядерные реакции синтеза и с какой интенсивностью происходят в его центре.

Уникальная особенность термоядерных реакций как источника энергии - очень большое энерговыделение на единицу массы реагирующих веществ - в 10 млн раз больше, чем в химических реакциях. Вступление в синтез 1 г изотопов водорода эквивалентно сгоранию 10 т бензина. Поэтому ученые давно стремятся овладеть этим гигантским источником энергии. В принципе мы умеем уже сегодня получать на Земле энергию термоядерного синтеза. Нагреть вещество до звездных температур можно, используя энергию атомного взрыва. Так устроена водородная бомба - самое страшное оружие современности, в которой взрыв ядерного запала приводит к мгновенному нагреву смеси дейтерия с тритием и последующему термоядерному взрыву.

Но не к такому неуправляемому синтезу, способному погубить все живое на Земле, стремятся ученые. Они ищут способы осуществления управляемого термоядерного синтеза. Какие же условия должны быть для этого выполнены? Прежде всего, конечно, нужно нагреть термоядерное горючее до температуры, когда реакции синтеза могут происходить с заметной вероятностью. Но этого мало. Необходимо, чтобы при синтезе выделялось больше энергии, чем затрачивается на нагрев вещества, или, что еще лучше, чтобы рождающиеся при синтезе быстрые частицы сами поддерживали требуемую температуру горючего. Для этого нужно, чтобы вступающее в синтез вещество было надежно теплоизолировано от окружающей и, естественно, холодной на Земле среды, т. е. чтобы время остывания, или, как говорят, время удержания энергии, было достаточно велико.

Требования к температуре и времени удержания зависят от используемого горючего. Легче всего осуществить синтез между тяжелыми изотопами водорода - дейтерием (Д) и тритием (Т). При этом в результате реакции получается ядро гелия (He 4) и нейтрон. Дейтерий имеется на Земле в огромных количествах в морской воде (один атом дейтерия на 6000 атомов водорода). Тритий же в природе отсутствует. Сегодня его получают искусственно, облучая в ядерных реакторах нейтронами литий. Отсутствие трития не является, однако, препятствием для использования Д-Т реакции синтеза, так как образующийся при реакции нейтрон можно использовать для воспроизводства трития, облучая литий, запасы которого на Земле достаточно велики.

Для осуществления Д-Т реакции наиболее выгодны температуры около 100 млн градусов. Требование же ко времени удержания энергии зависит от плотности реагирующего вещества, которое при такой температуре неизбежно будет находиться в виде плазмы, т. е. ионизированного газа. Так как интенсивность термоядерных реакций тем выше, чем выше плотность плазмы, требования ко времени удержания энергии обратно пропорциональны плотности. Если выражать плотность в виде числа ионов в 1 см 3 , то для Д-Т реакции при оптимальной температуре условие получения полезной энергии можно записать в виде: произведение плотности n на время удержания энергии τ должно быть больше 10 14 см −3 с, т. е. плазма с плотностью 10 14 ионов в 1 см 3 должна заметно остывать не быстрее, чем за 1 с.

Так как тепловая скорость ионов водорода при требуемой температуре 10 8 см/с, за 1 с ионы пролетают 1000 км. Поэтому нужны специальные устройства, предотвращающие попадание плазмы на стенки, теплоизолирующие её. Плазма - газ, состоящий из смеси ионов и электронов. На заряженные частицы, движущиеся поперек магнитного поля, действует сила, искривляющая их траекторию и заставляющая двигаться по окружностям с радиусами, пропорциональными импульсу частиц и обратно пропорциональными магнитному полю. Таким образом, магнитное поле может предотвратить уход заряженных частиц в направлении, перпендикулярном силовым линиям. На этом основана идея магнитной термоизоляции плазмы. Магнитное поле, однако, не препятствует движению частиц вдоль силовых линий: в общем случае частицы движутся по спиралям, навиваясь на силовые линии.

Физики придумали разные хитрости, предотвращающие уход частиц вдоль силовых линий. Можно, например, сделать «магнитные пробки» - области с более сильным магнитным полем, отражающие часть частиц, но лучше всего свернуть силовые линии в кольцо, использовать тороидальное магнитное поле. Но и одного тороидального поля, оказывается, недостаточно.

Тороидальное поле неоднородно в пространстве - его напряженность спадает по радиусу, а в неоднородном поле возникает медленное движение заряженных частиц - так называемый дрейф - поперек магнитного поля. Ликвидировать этот дрейф можно, пропустив через плазму ток вдоль обхода тора. Магнитное поле тока, складываясь с тороидальным внешним полем, сделает общее поле винтовым.

Двигаясь по спиралям вдоль силовых линий, заряженные частицы будут переходить из верхней полуплоскости тора в нижнюю и обратно. При этом они будут все время дрейфовать в одну сторону, например вверх. Но, находясь в верхней полуплоскости и дрейфуя вверх, частицы уходят от средней плоскости тора, а находясь в нижней полуплоскости и дрейфуя тоже вверх, частицы возвращаются к ней. Так дрейфы в верхней и нижней половинах тора взаимно компенсируются и не приводят к потерям частиц. Именно так и устроена магнитная система установок типа Токамак, на которых получены наилучшие результаты по нагреву и термоизоляции плазмы.

Кроме термоизоляции плазмы необходимо обеспечить также её нагрев. В Токамаке для этой цели можно использовать ток, протекающий по плазменному шнуру. В других устройствах, где удержание осуществляется без тока, а также и в самом Токамаке для нагрева до очень высоких температур используют и иные способы нагрева, например с помощью высокочастотных электромагнитных волн, инжекции (введения) в плазму пучков быстрых частиц, световых пучков, генерируемых мощными лазерами, и т. д. Чем больше мощность нагревающего устройства, тем быстрее можно нагреть плазму до требуемой температуры. Разработка в последние годы очень мощных лазеров и источников пучков релятивистских заряженных частиц позволила нагревать малые объемы вещества до термоядерных температур за очень малое время, столь малое, что вещество успевает нагреться и вступить в реакции синтеза раньше, чем разлететься из‑за теплового движения. В таких условиях дополнительная термоизоляция оказалась ненужной. Единственное, что удерживает частицы от разлета,- это их собственная инерция. Термоядерные устройства, основанные на этом принципе, называют устройствами с инерционным удержанием. Это новое направление исследований, которое называется инерционным термоядерным синтезом, усиленно развивается в настоящее время.