Экология жизни. Наука и открытия: Теореме Гёделя о неполноте, одной из самых известных теорем математической логики, повезло и не повезло одновременно. В этом она похожа на специальную теорию относительности Эйнштейна. С одной стороны, почти все о них что-то слышали. С другой интерпретации теория Эйнштейна «говорит, что всё в мире относительно».

Теореме Гёделя о неполноте , одной из самых известных теорем математической логики, повезло и не повезло одновременно. В этом она похожа на специальную теорию относительности Эйнштейна.

С одной стороны, почти все о них что-то слышали. С другой - в народной интерпретации теория Эйнштейна , как известно, «говорит, что всё в мире относительно ». А теорема Гёделя о неполноте (далее просто ТГН), в примерно столь же вольной фолк-формулировке, «доказывает, что есть вещи, непостижимые для человеческого разума ».

И вот одни пытаются приспособить её в качестве аргумента против мат ериализма , а другие, напротив, доказывают с её помощью, что бога нет. Забавно не только то, что обе стороны не могут оказаться правыми одновременно, но и то, что ни те, ни другие не удосуживаются разобраться, что же, собственно, эта теорема утверждает.

Итак, что же? Ниже я попытаюсь «на пальцах» рассказать об этом. Изложение моё будет, разумеется нестрогим и интуитивным, но я попрошу математиков не судить меня строго. Возможно, что для нематематиков (к которым, вообще-то, отношусь и я), в рассказанном ниже будет что-то новое и полезное.

Математическая логика - наука действительно довольно сложная, а главное - не очень привычная. Она требует аккуратных и строгих манёвров, при которых важно не перепутать реально доказанное с тем, что «и так понятно». Тем не менее, я надеюсь, что для понимания следующего ниже «наброска доказательства ТГН» читателю понадобится только знание школьной математики/информатики, навыки логического мышления и 15-20 минут времени.

Несколько упрощая, ТГН утверждает, что в достаточно сложных языках существуют недоказуемые высказывания. Но в этой фразе почти каждое слово нуждается в пояснении.

Начнём с того, что попытаемся разобраться, что такое доказательство. Возьмём какую-нибудь школьную задачку по арифметике. Например, пусть требуется доказать верность следующей незамысловатой формулы: «∀x(x−1)(x−2)−2=x(x−3)» (напомню, что символ ∀ читается «для любого» и называется «квантор всеобщности»). Доказать её можно, тождественно преобразуя, скажем, так:

    ∀x(x−1)(x−2)−2=x(x−3)

    ∀xx2−3x+2−2=x2−3x

    ∀xx2−3x–x2+3x=0

    ∀x0=0

    ИСТИНА

Переход от одной формулы к другой происходит по некоторым известным правилам. Переход от 4-й формулы к 5-й произошёл, скажем, потому, что всякое число равно самому себе - такова аксиома арифметики. А вся процедура доказывания, таким образом, переводит формулу в булево значение ИСТИНА. Результатом могла быть и ЛОЖЬ - если бы мы опровергали какую-то формулу. В таком случае мы бы доказали её отрицание. Можно себе представить программу (и такие программы действительно написаны), которые бы доказывали подобные (и более сложные) высказывания без участия человека.

Изложим то же самое чуть более формально. Пусть у нас есть множество, состоящее из строк символов какого-то алфавита, и существуют правила, по которым из этих строк можно выделить подмножество S так называемых высказываний - то есть грамматически осмысленных фраз, каждая из которых истинна или ложна . Можно сказать, что существует функция P, сопоставляющая высказываниям из S одно из двух значений: ИСТИНА или ЛОЖЬ (то есть отображающая их в булево множество B из двух элементов).

Назовём такую пару - множество высказываний S и функция P из >S в B - «языком высказываний» . Заметим, что в повседневном смысле понятие языка несколько шире. Например, фраза русского языка «А ну иди сюда! » не истинна и не ложна, то есть высказыванием, с точки зрения математической логики, не является.

Для дальнейшего нам понадобится понятие алгоритма. Приводить здесь формальное его определение я не буду - это завело бы нас довольно далеко в сторону. Ограничусь неформальным: «алгоритм» - эта последовательность однозначных инструкций («программа»), которая за конечное число шагов переводит исходные данные в результат.

Выделенное курсивом принципиально важно - если на каких-то начальных данных программа зацикливается, то алгоритма она не описывает. Для простоты и в применении к нашему случаю читатель может считать, что алгоритм - это программа, написанная на любом известном ему языке программирования, которая для любых входных данных из заданного класса гарантированно завершает свою работу с выдачей булевого результата.

Спросим себя: для всякой ли функции P существует «доказывающий алгоритм» (или, короче, «дедуктика »), эквивалентный этой функции, то есть переводящий каждое высказывание именно в то булево значение, что и она? Лаконичнее тот же вопрос можно сформулировать так: всякая ли функция над множеством высказываний вычислима?

Как вы уже догадываетесь, из справедливости ТГН следует, что нет, не всякая - существуют невычислимые функции такого типа. Иными словами, не всякое верное высказывание можно доказать.

Очень может быть, что это утверждение вызовет у вас внутренний протест. Связано это с несколькими обстоятельствами. Во-первых, когда нас учат школьной математике, то иногда возникает ложное впечатление почти полной тождественности фраз «теорема X верна» и «можно доказать или проверить теорему X».

Но, если вдуматься, это совершенно не очевидно. Некоторые теоремы доказываются довольно просто (например, перебором небольшого числа вариантов), а некоторые - очень сложно. Вспомним, например, знаменитую Великую теорему Ферма :

Не существует таких натуральных x,y,z и n>2, что xn+yn=zn,

доказательство которой нашли только через три с половиной века после первой формулировки (и оно далеко не элементарно). Следует различать истинность высказывания и его доказуемость. Ниоткуда не следует, что не существует истинных, но недоказуемых (и не проверяемых в полной мере) высказываний.

Второй интуитивный довод против ТГН более тонок. Допустим, у нас есть какое-то недоказуемое (в рамках данной дедуктики) высказывание. Что мешает нам принять его в качестве новой аксиомы? Тем самым мы чуть усложним нашу систему доказательств, но это не страшно.

Этот довод был бы совершенно верен, если бы недоказуемых высказываний было конечное число. На практике же может произойти следующее - после постулирования новой аксиомы вы наткнётесь на новое недоказуемое высказывание . Примете его в качестве ещё аксиомы - наткнётесь на третье. И так до бесконечности.

Говорят, что дедуктика останется неполной . Мы можем также принять силовые меры, чтобы доказывающий алгоритм заканчивался через конечное число шагов с каким-то результатом для любого высказывания языка. Но при этом он начнёт врать - приводить к истине для неверных высказываний, или ко лжи - для верных.

В таких случаях говорят, что дедуктика противоречива. Таким образом, ещё одна формулировка ТГН звучит так: «Существуют языки высказываний, для которых невозможна полная непротиворечивая дедуктика » - отсюда и название теоремы.

Иногда называют «теоремой Гёделя» утверждение о том, что любая теория содержит проблемы, которые не могут быть решены в рамках самой теории и требуют её обобщения. В каком-то смысле это верно, хотя такая формулировка скорее затуманивает вопрос, чем проясняет его.

Замечу также, что если бы речь шла о привычных функциях, отображающих множество вещественных чисел в него же, то «невычислимость» функции никого бы не удивила (только не надо путать «вычислимые функции» и «вычислимые числа» - это разные вещи).

Курт Гедель

Любому школьнику известно, что, скажем, в случае функции sin⁡x вам должно сильно повезти с аргументом, чтобы процесс вычисления точного десятичного представления значения этой функции окончился за конечное число шагов.

А скорее всего вы будете вычислять её с помощью бесконечного ряда, и это вычисление никогда не приведёт к точному результату, хотя может подойти к нему как угодно близко - просто потому, что значение синуса большинства аргументов иррационально . ТГН просто говорит нам о том, что даже среди функций, аргументами которой являются строки, а значениями - ноль или единица, невычислимые функции, хотя и совсем по другому устроенные, тоже бывают .

Для дальнейшего опишем «язык формальной арифметики». Рассмотрим класс строк текста конечной длины, состоящих из арабских цифр, переменных (букв латинского алфавита), принимающих натуральные значения, пробелов, знаков арифметических действий, равенства и неравенства, кванторов ∃ («существует») и ∀ («для любого») и, быть может, каких-то ещё символов (точное их количество и состав для нас неважны).

Понятно, что не все такие строки осмысленны (например, «12=+∀x>» - это бессмыслица). Подмножество осмысленных выражений из этого класса (то есть строк, которые истинны или ложны с точки зрения обычной арифметики) и будет нашим множеством высказываний.

Примеры высказываний формальной арифметики:

    1=1

    2×2=5

    ∃xx>3

    ∀y∀zy×z>y+ z

и т.д. Теперь назовём «формулой со свободным параметром» (ФСП) строку, которая становится высказыванием, если в качестве этого параметра подставить в неё натуральное число. Примеры ФСП (с параметром x):

    x=0

    2×2=x

    ∃yx+y>x

и т.д. Иными словами, ФСП эквивалентны функциям натурального аргумента с булевыми значением.

Обозначим множество всех ФСП буквой F. Понятно, что его можно упорядочить (например, сначала выпишем упорядоченные по алфавиту однобуквенные формулы, за ними - двухбуквенные и т.д.; по какому именно алфавиту будет происходить упорядочивание, нам непринципиально). Таким образом, любой ФСП соответствует её номер k в упорядоченном списке, и мы будем обозначать её Fk.

Перейдём теперь к наброску доказательства ТГН в такой формулировке:

Для языка высказываний формальной арифметики не существует полной непротиворечивой дедуктики.

Доказывать будем от противного.

Итак, допустим, что такая дедуктика существует. Опишем следующий вспомогательный алгоритм A, ставящий в соответствие натуральному числу k булево значение следующим образом :

1. Находим k-ю формулу в списке F.

2. Подставляем в неё число k в качестве аргумента.

3. Применяем к полученному высказыванию наш доказывающий алгоритм (по нашему предположению, он существует), который переводит его в ИСТИНУ или ЛОЖЬ.

4. Применяем логическое отрицание к полученному результату.

Проще говоря, алгоритм приводит к значению ИСТИНА тогда и только тогда, когда результат подстановки в ФСП её собственного номера в нашем списке даёт ложное высказывание.

Тут мы подходим к единственному месту, в котором я попрошу читателя поверить мне на слово.

Очевидно, что, при сделанном выше предположении, любой ФСП из F можно сопоставить алгоритм, содержащий на входе натуральное число, а на выходе – булево значение.

Менее очевидно обратное утверждение:

Лемма: Любому алгоритму, переводящему натуральное число в булево значение, соответствует какая-то ФСП из множества F.

Доказательство этой леммы потребовало бы, как минимум, формального, а не интуитивного, определения понятия алгоритма. Однако, если немного подумать, то она довольно правдоподобна.

В самом деле, алгоритмы записываются на алгоритмических языках, среди которых есть такие экзотические, как, например, Brainfuck, состоящий из восьми односимвольных слов, на котором, тем не менее, можно реализовать любой алгоритм. Странно было бы, если бы описанный нами более богатый язык формул формальной арифметики оказался бы беднее - хотя, без сомнения, для обычного программирования он не очень подходит.

Пройдя это скользкое место, мы быстро добираемся до конца.

Итак, выше мы описали алгоритм A. Согласно лемме, в которую я попросил вас поверить, существует эквивалентная ему ФСП. Она имеет какой-то номер в списке F - скажем, n. Спросим себя, чему равно Fn(n)? Пусть это ИСТИНА. Тогда, по построению алгоритма A (а значит, и эквивалентной ему функции Fn), это означает, что результат подстановки числа n в функцию Fn - ЛОЖЬ.

Аналогично проверяется и обратное: из Fn(n)=ЛОЖЬ следует Fn(n)=ИСТИНА. Мы пришли к противоречию, а значит, исходное предположение неверно. Таким образом, для формальной арифметики не существует полной непротиворечивой дедуктики. Что и требовалось доказать.

Здесь уместно вспомнить Эпименида, который, как известно, заявил, что все критяне - лжецы, сам являясь критянином. В более лаконичной формулировке его высказывание (известное как «парадокс лжеца») можно сформулировать так: «Я лгу ». Именно такое высказывание, само превозглашающее свою ложность, мы и использовали для доказательства.

В заключение я хочу заметить, что ничего особенного удивительного ТГН не утверждает. В конце концов, все давно привыкли, что не все числа представимы в виде отношения двух целых (помните, у этого утверждения есть очень изящное доказательство, которому больше двух тысяч лет?). И корнями полиномов с рациональными коэффициентами являются т оже не все числа . А теперь вот выяснилось, что не все функции натурального аргумента вычислимы.

Приведённый набросок доказательства относился к формальной арифметике, но нетрудно понять, что ТГН применима и к многим другим языкам высказываний. Разумеется, не всякие языки таковы. Например, определим язык следующим образом:

«Любая фраза китайского языка является верным высказыванием, если она содержится в цитатнике товарища Мао Дзе Дуна, и неверна, если не содержится».

Тогда соответствующий полный и непротиворечивый доказывающий алгоритм (его можно назвать «догматической дедуктикой») выглядит примерно так:

«Листай цитатник товарища Мао Дзе Дуна, пока не найдёшь искомое высказывание. Если оно найдено, то оно верно, а если цитатник закончился, а высказывание не найдено, то оно неверно».

Здесь нас спасает то, что любой цитатник, очевидно, конечен, поэтому процесс «доказывания» неминуемо закончится. Таким образом, к языку догматических высказываний ТГН неприменима. Но мы ведь говорили о сложных языках, правда? опубликовано

Идея доказательства заключается в том, чтобы построить такое выражение, которое свидетельствовало бы о своей

собственной недоказуемости. Такое построение может быть выполнено в три этапа:

Первый этап - установление соответствия между формальной арифметикой и множеством целых чисел (гедели-зации);

Второй этап - построение некоторого специального свойства о котором неизвестно, является ли оно теоремой формальной арифметики или нет;

Третий этап - подстановка в вместо х определенного целого числа, связанного с самим т. е. замещение этими числами всех

Первый этап. Геделизация формальной арифметики

Формальная арифметика может быть арифметизирована (т. е. геделизирована) следующим образом: каждой ее теореме ставится в соответствие некоторое число. Однако так как всякое число также является теоремой, то всякая теорема может рассматриваться, с одной стороны, в качестве теоремы формальной арифметики, а с другой - как теорема над множеством теорем формальной арифметики, т. е. в качестве метатеоремы, соответствующей доказательству некой теоремы.

Таким образом, можно сделать вывод, что система формальной арифметики содержит также и свою собственную метасистему.

Теперь более конкретно и подробно изложим полученные результаты.

Во-первых, мы можем связать с каждым символом и формальной арифметики специальное кодовое обозначение, называемое в данном случае геделевым номером

Во-вторых, каждой последовательности символов мы ставим в соответствие тот же геделев номер с помощью некоторой функции композиции Пусть где представляют собой последовательности символов, которые образуют

В-третьих (и это существенно), каждому доказательству последовательности аксиом и правил подстановки (или правил замещения) ставится в соответствие число где обозначает последовательность теорем, используемых при доказательстве

Таким образом, всякому доказательству в формальной арифметике соответствует некоторое число - его геделев номер Всякое рассуждение формальной ариметики преобразуется в вычисления на множестве натуральных чисел.

Итак, вместо того чтобы производить манипуляции с символами, теоремами, доказательствами, можно воспользоваться

вычислениями на множестве целых чисел. Всякое выражение, подобное, например, следующему: доказуемо в формальной арифметике", теперь соответствует определенному числу, которое будем обозначать как

Сформулируем следующее положение.

Формальная метаарифметика содержится в множестве натуральных чисел, а оно само содержится в интерпретации формальной арифметики.

Эта ситуация с формальной арифметикой напоминает ситуацию с естественным языком: ведь нам ничто не мешает использовать его и для того, чтобы формулировать на нем основные его понятия и правила.

Надлежащий выбор функции позволяет осуществить однозначный переход от А к т. е. присвоить два разных числа-номера двум различным доказательствам. Например, можно так выбрать геделевы номера, чтобы каждому символу алфавита формальной арифметики соответствовало свое простое число, как показано, например, в табл. 3.2.

Таблица 3.2

Каждая формула (состоящая из символов изменяющимся от 1 до в свою очередь кодируется последовательностью, состоящей из первых простых чисел, т. е. числом

где простое число.

В свою очередь доказательство, т. е. последовательность из формул будет закодирована аналогичным образом числом

И наоборот, благодаря такому способу построения номеров становится возможным, исходя из некоторого числа, с помощью разложения его на простые множители (в силу единственности разложения натуральных чисел в произведения степеней простых чисел) возвратиться за два шага к показателям степени т. е. к примитивным символам формальной арифметики. Конечно, это имеет в основном лишь теоретическое значение, так как номера быстро становятся слишком большими

для того, чтобы ими можно было манипулировать. Однако следует отметить, что существенным является принципиальная возможность этой операции.

Пример. Пусть задано число Т, соответствующее некоторому доказательству и представляющее собой произведение простых чисел:

Это разложение означает, что доказательство теоремы содержит два этапа: один соответствует числу 1981027125 253, а другой - числу 1981027125 211. Разлагая снова на простые множители каждое из этих чисел, получим

Из таблицы кодирования алфавита формальной арифметики (табл. 3.2) находим, что нашим геделевым номерам для Этих двух чисел

будет соответствовать следующее доказательство:

Из формулы следует формула

Таким образом, в метаарифметике получено значение исходного числа из формальной арифметики.

Второй этап. Лемма Геделя

Всякому числу Т, связанному с доказательством, соответствует теорема доказуемая в формальной арифметике. “Геделизированную” формальную арифметику называют арифметизированной формальной арифметикой. Поскольку каждая аксиома и каждое правило арифметизированной формальной арифметики соответствуют какой-нибудь арифметической операции, то с помощью систенатизированной проверки можно определить, соответствует ли данное число Т доказательству какой-то теоремы Числа Т и образуют в этом случае пару сопряженных чисел. Выражение и являются сопряженными” Представимо внутри самой арифметизированной формальной арифметики. Это означает, что существует геделев номер который выражает в цифровой форме это утверждение.

Мы подошли к критическому пункту доказательства Геделя. Пусть А является выражением арифметизированной формальной арифметики, которое содержит какую-то свободную переменную. Вместо нее можно сделать подстановку какого-нибудь терма. В частности, можно заменить выражение А самим выражением А. В этом случае номер-выражение А выполняет одновременно две различные роли (см. выше построения

Кантора и Ришара): оно одновременно является истинным выражением для подстановки и результирующим термом. Эту специальную подстановку будем обозначать как Так формула означает, что число есть геделев номер, получаемый при выполнении подстановки - к выражению А:

Затем Гедель строит выражение (о котором неизвестно, представляет ли оно собой теорему или не-теорему), в которое вводит эту подстановку. Выражение имеет следующий вид:

Третий этап. Завершающая подстановка

В арифметизированной формальной арифметике это выражение представлено в цифровой форме. Пусть Е - его геделев номер. Так как выражение содержит свободную переменную то мы имеем право выполнить подстановку - над замещая числом Е и обозначая -замещение Е:

Это второе выражение обозначим через а его геделев номер через Е. Дадим интерпретации выражения е.

Первая интерпретация. Не существует такой пары для которой одновременно выполнялось бы следующее: с одной стороны, Т - номер арифметизированного доказательства теоремы арифметизированной ею самой, а с другой - было бы есть замещение Но так как есть такое же преобразование, как и другие, то оно представимо в термах и в их кодовых обозначениях - геделевых номерах и, следовательно, такой номер существует. Тогда, возможно, номер Т не существует.

Вторая интерпретация. Не существует арифметизированного доказательства Т теоремы которое было бы -замещением Е. Итак, если не существует доказательства, то потому, что само по себе не является теоремой. Отсюда вытекает третья интерпретация.

Третья интерпретация. Выражение, для которого геделев номер есть -замещение Е, не является теоремой арифметизированной формальной арифметики. Но в этом и заключается противоречие, так как по построению именно само является -замещением Е и номер есть не что иное по построению, как сам номер Е. Отсюда вытекает последняя интерпретация е.

09Сен

Всякая система математических аксиом, начиная с определенного уровня сложности, либо внутренне противоречива, либо неполна.

В 1900 году в Париже прошла Всемирная конференция математиков, на которой Давид Гильберт (David Hilbert, 1862–1943) изложил в виде тезисов сформулированные им 23 наиважнейшие, по его мнению, задачи, которые предстояло решить ученым-теоретикам наступающего ХХ века. Под вторым номером в его списке значилась одна из тех простых задач, ответ на которые кажется очевидным, пока не копнешь немножечко глубже. Говоря современным языком, это был вопрос: самодостаточна ли математика? Вторая задача Гильберта сводилась к необходимости строго доказать, что система аксиом - базовых утверждений, принимаемых в математике за основу без доказательств, - совершенна и полна, то есть позволяет математически описать всё сущее. Надо было доказать, что можно задать такую систему аксиом, что они будут, во-первых, взаимно непротиворечивы, а во-вторых, из них можно вывести заключение относительно истинности или ложности любого утверждения.

Возьмем пример из школьной геометрии. В стандартной Евклидовой планиметрии (геометрии на плоскости) можно безоговорочно доказать, что утверждение «сумма углов треугольника равна 180°» истинно, а утверждение «сумма углов треугольника равна 137°» ложно. Если говорить по существу, то в Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе.

И тут в 1931 году какой-то венский очкарик - математик Курт Гёдель - взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». После долгих и сложных математико-теоретических преамбул он установил буквально следующее. Возьмем любое утверждение типа: «Предположение №247 в данной системе аксиом логически недоказуемо» и назовем его «утверждением A». Так вот, Гёдель попросту доказал следующее удивительное свойство любой системы аксиом:

«Если можно доказать утверждение A, то можно доказать и утверждение не-A».

Иными словами, если можно доказать справедливость утверждения «предположение 247 недоказуемо», то можно доказать и справедливость утверждения «предположение 247 доказуемо». То есть, возвращаясь к формулировке второй задачи Гильберта, если система аксиом полна (то есть любое утверждение в ней может быть доказано), то она противоречива.

Единственным выходом из такой ситуации остается принятие неполной системы аксиом. То есть приходиться мириться с тем, что в контексте любой логической системы у нас останутся утверждения «типа А», которые являются заведомо истинными или ложными, - и мы можем судить об их истинности лишь вне рамок принятой нами аксиоматики. Если же таких утверждений не имеется, значит, наша аксиоматика противоречива, и в ее рамках неизбежно будут присутствовать формулировки, которые можно одновременно и доказать, и опровергнуть.

Итак, формулировка первой, или слабой теоремы Гёделя о неполноте: «Любая формальная система аксиом содержит неразрешенные предположения» . Но на этом Гёдель не остановился, сформулировав и доказав вторую, или сильную теорему Гёделя о неполноте: «Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)» .

Спокойнее было бы думать, что теоремы Гёделя носят отвлеченный характер и касаются не нас, а лишь областей возвышенной математической логики, однако фактически оказалось, что они напрямую связаны с устройством человеческого мозга. Английский математик и физик Роджер Пенроуз (Roger Penrose, р. 1931) показал, что теоремы Гёделя можно использовать для доказательства наличия принципиальных различий между человеческим мозгом и компьютером. Смысл его рассуждения прост. Компьютер действует строго логически и не способен определить, истинно или ложно утверждение А, если оно выходит за рамки аксиоматики, а такие утверждения, согласно теореме Гёделя, неизбежно имеются. Человек же, столкнувшись с таким логически недоказуемым и неопровержимым утверждением А, всегда способен определить его истинность или ложность - исходя из повседневного опыта. По крайней мере, в этом человеческий мозг превосходит компьютер, скованный чистыми логическими схемами. Человеческий мозг способен понять всю глубину истины, заключенной в теоремах Гёделя, а компьютерный - никогда. Следовательно, человеческий мозг представляет собой что угодно, но не просто компьютер. Он способен принимать решения, и тест Тьюринга пройдет успешно.

Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.

В 1900 году в Париже прошла Всемирная конференция математиков, на которой Давид Гильберт (David Hilbert, 1862-1943) изложил в виде тезисов сформулированные им 23 наиважнейшие, по его мнению, задачи, которые предстояло решить ученым-теоретикам наступающего ХХ века. Под вторым номером в его списке значилась одна из тех простых задач, ответ на которые кажется очевидным, пока не копнешь немножечко глубже. Говоря современным языком, это был вопрос: самодостаточна ли математика? Вторая задача Гильберта сводилась к необходимости строго доказать, что система аксиом — базовых утверждений, принимаемых в математике за основу без доказательств, — совершенна и полна, то есть позволяет математически описать всё сущее. Надо было доказать, что можно задать такую систему аксиом, что они будут, во-первых, взаимно непротиворечивы, а во-вторых, из них можно вывести заключение относительно истинности или ложности любого утверждения.

Возьмем пример из школьной геометрии. В стандартной Евклидовой планиметрии (геометрии на плоскости) можно безоговорочно доказать, что утверждение «сумма углов треугольника равна 180°» истинно, а утверждение «сумма углов треугольника равна 137°» ложно. Если говорить по существу, то в Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе.

И тут в 1931 году какой-то венский очкарик — математик Курт Гёдель — взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». После долгих и сложных математико-теоретических преамбул он установил буквально следующее. Возьмем любое утверждение типа: «Предположение №247 в данной системе аксиом логически недоказуемо» и назовем его «утверждением A». Так вот, Гёдель попросту доказал следующее удивительное свойство любой системы аксиом:

«Если можно доказать утверждение A, то можно доказать и утверждение не-A».

Иными словами, если можно доказать справедливость утверждения «предположение 247 не доказуемо», то можно доказать и справедливость утверждения «предположение 247 доказуемо ». То есть, возвращаясь к формулировке второй задачи Гильберта, если система аксиом полна (то есть любое утверждение в ней может быть доказано), то она противоречива.

Единственным выходом из такой ситуации остается принятие неполной системы аксиом. То есть, приходиться мириться с тем, что в контексте любой логической системы у нас останутся утверждения «типа А», которые являются заведомо истинными или ложными, — и мы можем судить об их истинности лишь вне рамок принятой нами аксиоматики. Если же таких утверждений не имеется, значит, наша аксиоматика противоречива, и в ее рамках неизбежно будут присутствовать формулировки, которые можно одновременно и доказать, и опровергнуть.

Итак, формулировка первой ,или слабой теоремы Гёделя о неполноте : «Любая формальная система аксиом содержит неразрешенные предположения». Но на этом Гёдель не остановился, сформулировав и доказав вторую, или сильную теорему Гёделя о неполноте : «Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)».

Спокойнее было бы думать, что теоремы Гёделя носят отвлеченный характер и касаются не нас, а лишь областей возвышенной математической логики, однако фактически оказалось, что они напрямую связаны с устройством человеческого мозга. Английский математик и физик Роджер Пенроуз (Roger Penrose, р. 1931) показал, что теоремы Гёделя можно использовать для доказательства наличия принципиальных различий между человеческим мозгом и компьютером. Смысл его рассуждения прост. Компьютер действует строго логически и не способен определить, истинно или ложно утверждение А, если оно выходит за рамки аксиоматики, а такие утверждения, согласно теореме Гёделя, неизбежно имеются. Человек же, столкнувшись с таким логически недоказуемым и неопровержимым утверждением А, всегда способен определить его истинность или ложность — исходя из повседневного опыта. По крайней мере, в этом человеческий мозг превосходит компьютер, скованный чистыми логическими схемами. Человеческий мозг способен понять всю глубину истины, заключенной в теоремах Гёделя, а компьютерный — никогда. Следовательно, человеческий мозг представляет собой что угодно, но не просто компьютер. Он способен принимать решения , и тест Тьюринга пройдет успешно.

Интересно, догадывался ли Гильберт, как далеко заведут нас его вопросы?

Kurt Gödel, 1906-78

Австрийский, затем американский математик. Родился в г. Брюнн (Brünn, ныне Брно, Чехия). Окончил Венский университет, где и остался преподавателем кафедры математики (с 1930 года — профессором). В 1931 году опубликовал теорему, получившую впоследствии его имя. Будучи человеком сугубо аполитичным, крайне тяжело пережил убийство своего друга и сотрудника по кафедре студентом-нацистом и впал в глубокую депрессию, рецидивы которой преследовали его до конца жизни. В 1930-е годы эмигрировал было в США, но вернулся в родную Австрию и женился. В 1940 году, в разгар войны, вынужденно бежал в Америку транзитом через СССР и Японию. Некоторое время проработал в Принстонском институте перспективных исследований. К сожалению, психика ученого не выдержала, и он умер в психиатрической клинике от голода, отказываясь принимать пищу, поскольку был убежден, что его намереваются отравить.

Теоремы логики математической, показывающие невозможность полной формализации арифметики, а также более сильных математических теорий. Доказал и опубликовал их австр. математик К. Гёдель в 1931. Первая теорема тесно связана с явлением алгоритм, неразрешимости, вторая - значительно более тонкое утверждение о формальных системах. Содержание первой теоремы о неполноте (если ограничиться пока арифметикой) заключается в следующем. Пусть А - арифм. формальная система, содержащая аксиомы Пеано (см. Арифметика

формальная). При этом предполагается, что А корректно описывает арифметику, т. е., что все ф-лы, выводимые в А, являются истинными утверждениями о натуральных числах. Для любой такой системы А первая теорема Гёделя утверждает, что не все истинные ф-лы арифметики доказуемы в А. Другими словами, понятие истинности ф-л арифм. языка шире, чем понятие доказуемости в любой формальной системе (если последняя корректна). Ниже приводится интуитивная идея доказательства этой теоремы, которая существенна для понимания содержания обеих теорем о неполноте.

Предположим обратное, т. е., что арифм. истинность совпадает с доказуемостью в А. Поскольку доказательства в системе А суть конечные последовательности ф-л, связанных между собой правилами вывода, то проверка того, является ли данная последовательность ф-л доказательством, выполняется с помощью довольно простого алгоритма. При подходящем кодировании этот алгоритм может быть описан в арифм. языке (см. Арифметизация метаматематики). Поэтому можно построить арифм. ф-лу , означающую, что х есть код ф-лы, доказуемой в А. Теперь нетрудно написать ф-лу - назовем ее v, которая выражает свою собственную недоказуемость. Точнее, для этой ф-лы в системе А доказуема эквивалентность:

где есть код ф-лы . В силу предположения о том, что доказуемость совпадает с истинностью, получаем, что выражает также свою собственную ложность. Но тогда эта ф-ла не может быть ни истинной, ни ложной, так что мы приходим к известному «парадоксу лжеца». Следовательно, истинность и доказуемость не совпадают. Примером истинной, но недоказуемой в А ф-лы как раз и является ф-ла она истинна, так как утверждает свою недоказуемость и в самом деле недоказуема.

Приведенные выше эвристические соображения существенно используют предположение о том, что в А доказуемы только истинные формулы. Более строгое исследование показывает, однако, что недоказуемость может быть выведена из более слабого предположения о непротиворечивости системы А. Это уточнение имеет принципиальный характер. Дело в том, что понятие арифм. истинности невыразимо в языке арифметики, в то время как утверждение о непротиворечивости А можно записать й виде довольно простой арифм. ф-лы . Благодаря этому первую теорему о неполноте можно высказать на языке арифметики посредством ф-лы:

Можно показать, что эта ф-ла сама выводима из аксиом Пеано. Отсюда легко получается вторан теорема Гёделя о неполноте, которая (нестрого) утверждает, что непротиворечивость формальной системы А нельзя доказать средствами этой системы. Более строго, если формальная система А непротиворечива и содержит аксиомы Пеано, то ф-ла недоказуема в . В самом деле, из доказуемости ф-л (1) и (2) вытекает, что формулы и эквивалентны в системе А. Но недоказуема в Л, согласно первой теореме Гёделя; значит, тоже недоказуема.

До сих пор речь шла только об арифметике. Но все предыдущие рассуждения применимы также к достаточно произвольным формальным системам. В частности, совсем не обязательно, чтобы языком системы А был язык элементарной арифметики. Единственное, что здесь требуется, - это чтобы осн. понятия арифметики были выразимы в языке рассматриваемой формальной системы, а аксиомы Пеано - доказуемы в этой системе. Поэтому теоремы Гёделя применимы к любым разумным аксиоматизациям арифметики, анализа или множеств теории.

Теоремы о неполноте выявляют одну специфическую трудность, связанную с доказательствами непротиворечивости. Сущность ее удобнее всего проиллюстрировать на примере теории мн-в. Пусть ZF есть формальная система теории мн-в, основанная на аксиомах Цер-мело - Френкеля. До сих пор не существует доказательства непротиворечивости для ZF. Однако можно заранее сказать, что такое доказательство должно удовлетворять следующим двум требованиям (из которых первое обусловлено самой постановкой вопроса, а второе следует из теоремы Гёделя): а) это доказательство должно опираться лишь на концепции, интуитивно более простые, чем те, которые используются в самой теории мн-в; б) его нельзя провести в рамках системы ZF. Но система ZF отличается чрезвычайной широтой: в ней формализуется практически вся современная математика. Поэтому трудно представить себе, как выглядело бы матем. доказательство, удовлетворяющее указанным требованиям. Т. о., здесь затрагиваются сложные проблемы оснований математики, в силу чего теоремы Гёделя имеют определенный философский интерес.

Существует мнение, что теоремы о неполноте показывают невозможность маш. моделирования каких-либо нетривиальных форм мыслительной деятельности. Такое мнение, по-видимому, лишено достаточных оснований; Г. т. о н. имеют к вопросу о машинном творчестве такое же отношение, как, напр., логические парадоксы к творческим способностям человеческого разума. Вопрос о возможностях «машинного разума» является дискуссионным (см. Искусственный разум).

Лит.: Клини С. К. Математическая логика. Пер. с англ. М., 1973 [библиогр. с. 451-465); FefermanS. Arithmetization of metamathematics in a general setting. «Pundamenta mathematicae», 1960, v. 49; Линдон P. Заметки по логике. Пер. с англ. М., 1968 [библиогр. с. 123]; Арбиб М. Мозг, машина и математика. Пер. с англ. М., 1968 [библиогр. с. 217- 224]; Нагель Э., Ньюмен Д. Р. Теорема Гёделя. Пер. с англ. М., 1970.