"Решаем трудные задачи ЕГЭ по информатике"

Цель семинара: рассмотреть методические приёмы решения наиболее сложных задач ЕГЭ по информатике.

Ведущие: учителя информатики общеобразовательных организаций Костромской области

Внимание!!! Участникам семинара будут выданы сертификаты

Условия получения сертификата

  • Выполнение предложенных в ходе мастер-классов заданий (по всем типам заданий)
  • Обратная связь с учителями, ведущими мастер-класс (отправка выполненных заданий учителю на электронный адрес)

Ход семинара

1. Задание № 23 ЕГЭ. Решение логических уравнений зеркальным способом

Ведущая: Лебедева Елена Валерьевна, учитель информатики МБОУ города Костромы "Средняя общеобразовательная школа № 21"

  • Посмотрите видео-материалы мастер-класса учителя и выполните тренировочные задания. Если видео-материалы просмотреть не удаётся, то скачайте презентацию и познакомьтесь с технологией выполнения задания № 23.
  • [email protected]

Тренировочные задания к части 1 Метод отображения задание 1.docx

Тренировочные задания к части 2Метод отображения задание 2.docx

Презентация по материалам части 1 и части 2

Тренировочные задания к части 3. метод отображения задание 3.docx
Презентация по материалам части 3

2. Задание № 5 ЕГЭ. Кодирование и декодирование данных

Ведущая: Смирнова Елена Леонидовна, учитель информатики МОУ СОШ № 2 городского округа город Буй Костромской области

  • Посмотрите видео-материалы мастер-класса учителя и выполните тренировочные задания. Если видео-материалы просмотреть не удаётся, то скачайте презентацию и познакомьтесь с технологией выполнения задания № 5.
  • Выполненные тренировочные задания отправьте учителю на электронный адрес [email protected]
  • Получите от учителя ответ о результатах выполненной вами работы.

Презентация по демонстрируемым материалам

Для эффективной подготовки по информатике для каждого задания дан краткий теоретический материал для выполнения задачи. Подобрано свыше 10 тренировочных заданий с разбором и ответами, разработанные на основе демоверсии прошлых лет.

Изменений в КИМ ЕГЭ 2020 г. по информатике и ИКТ нет.

Направления, по которым будет проведена проверка знаний:

  • Программирование;
  • Алгоритмизация;
  • Средства ИКТ;
  • Информационная деятельность;
  • Информационные процессы.

Необходимые действия при подготовке :

  • Повторение теоретического курса;
  • Решение тестов по информатике онлайн ;
  • Знание языков программирования;
  • Подтянуть математику и математическую логику;
  • Использовать более широкий спектр литературы – школьной программы для успеха на ЕГЭ недостаточно.

Структура экзамена

Длительность экзамена – 3 часа 55 минут (255 минут), полтора часа из которых рекомендовано уделить выполнению заданий первой части КИМов.

Задания в билетах разделены на блоки:

  • Часть 1 - 23 задания с кратким ответом.
  • Часть 2 - 4 задачи с развернутым ответом.

Из предложенных 23 заданий первой части экзаменационной работы 12 относятся к базовому уровню проверки знаний, 10 – повышенной сложности, 1 – высокому уровню сложности. Три задачи второй части высокого уровня сложности, одна – повышенного.

При решении обязательна запись развернутого ответа (произвольная форма).
В некоторых заданиях текст условия подан сразу на пяти языках программирования – для удобства учеников.

Баллы за задания по информатике

1 балл - за 1-23 задания
2 балла - 25.
З балла - 24, 26.
4 балла - 27.
Всего: 35 баллов.

Для поступления в технический вуз среднего уровня, необходимо набрать не менее 62 баллов. Чтобы поступить в столичный университет, количество баллов должно соответствовать 85-95.

Для успешного написания экзаменационной работы необходимо четкое владение теорией и постоянная практика в решении задач.

Твоя формула успеха

Труд + работа над ошибками + внимательно читать вопрос от начала и до конца, чтобы избежать ошибок = максимальный балл на ЕГЭ по информатике.

Интерактивный тренажер 23 ЕГЭ ДЕМО 2017

для затрудняющихся полное решение размещено в самом конце данной страницы

Возникли вопросы, сомнения или появились замечания, пишите...

И вторая с развернутым мною условием специально для подчеркивания кажущейся сложности и огромного различия , как количества уравнений , так и их содержания .

Демонстрационный вариант ЕГЭ 2015 информатика и ИКТ задача 23.

Сколько существует различных наборов значений логических переменныхx1, x2, … x8, y1, y2, … y8, которые удовлетворяют всем перечисленным ниже условиям?
(x1 | x2) & ((x1 & x2) → x3) & (¬x1 | y1) = 1
(x2 | x3) & ((x2 & x3) → x4) & (¬x2 | y2) = 1
(x3 | x4) & ((x3 & x4) → x5) & (¬x3 | y3) = 1
(x4 | x5) & ((x4 & x5) → x6) & (¬x4 | y4) = 1
(x5 | x6) & ((x5 & x6) → x7) & (¬x5 | y5) = 1
(x6 | x7) & ((x6 & x7) → x8) & (¬x6 | y6) = 1
(x7 | x8) & (¬x7 | y7) = 1
(¬x8 | y8) = 1

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, … x8, y1, y2, … y8, при которых выполнена данная система равенств.В качестве ответа Вам нужно указать количество таких наборов.

А мне только и остается, несмотря на эту самую кажущуюся сложность данной задачи, показать. как ее решение легко сводится к решению подобному первой.

Берем первое уравнение (x1 | x2) & ((x1 & x2) → x3) & (¬x1 | y1) = 1 и с помощью таблицы истинности находим все его решения. После чего остается выделить (вычеркнуть) все строки, имеющие 0 в итоговой колонке

Анализируя таблицу, строим отображения пар x 1x 2 в x 2x 3, замечая, что первая пара со значениями 01 отображается во вторую со значением 10 дважды (для значения y 1=1 и y 1=0 отсюда и двойная красная стрелка, аналогично строится отображение для пар со значениями 01-11)

По данному рисунку строим правила отображения, по которым и находим количество решений для первых шести уравнений для чего достаточно заполнить следующую таблицу

Откуда и находим, что первые шесть уравнений имеют всего 53 решения.

А нам остается разобраться с оставшимися «добавочными» двумя уравнениями
(x7 | x8) & (¬x7 | y7) = 1
(¬x8 | y8) = 1
Остановимся на первом из них и, не вдаваясь в глубокие рассуждения, заполним таблицу истинности для него, где цифрой 1 обозначим условно первую скобку, а цифрой два – соответственно вторую и крышечкой – их произведение.

Из таблицы видно, что пара x7x8

    не имеет решений при значениях 00 (что означает следующее: пара x7x8 со значением 00 отобразится в y7 с теми же значениями 0 раз (т.е. не отображается)

    имеет два решения при значении 01 (y7 = 0 и y7 = 1 , что означает следующее: количество решений для пары x7x8 со значением 01, отобразившись в y7 - удвоится

    имеет по одному решению со значениями 10 и 11 , т.е. количество решений в отображении с этими значениями не изменится.

Нам остается, заполнив соответствующие ячейки найденными значениями, найти количество решений для первых семи уравнений

И вот он, самый ответственный шаг, поэтому с целью не совершения лишних ошибок вновь прибегаем к построению таблицы истинности, но уже для восьмого уравнения
(¬x8 | y8) = 1

Из построенной нами таблицы истинности видно, что

    если Х8 = 0, то Y8 имеет два решения 0 и 1 (т.е. количество решений при отображении удваиваем)

    если Х8 = 1, то Y8 имеет одно решение (т.е. количество решений при отображении неизменно)

это означает, что если x8 равно 0, то в отображении x8 на y8 при значениях 00 и 10 количество решений удваивается, а в случае, когда x8 равно 1 в отображении x8 на y8 при значениях 01 и 11 количество решений остается неизменным. Это и отобразим в заключительной таблице и суммируя все значения столбика Y8 находим искомый результат.

Правильный ответ: 61

Полное решение-подсказка для задания 23 Демоврсии ЕГЭ 2017 по информатике

1. Общие сведения

Сложность : высокая.

Примерное время решения (для тех, кто будет выполнять часть 2): 5-10 минут

Тема: Основы логики

Подтема: Анализ логических выражений

Что проверяется: Умение анализировать логические выражения. Умение описать на естественном языке множество значений логических переменных, при которых заданный набор логических выражений истинен.

Как может выглядеть задание:

Например, так.

Найти количество решений системы логических уравнений. Предполагается, что ученик опишет множество решений системы, после чего подсчитает, сколько элементов есть в этом множестве.

2. Пример задания

2.1. Условие задачи.

Задача 2012- B15-1.

Сколько существует различных наборов значений логических переменных x 1 , x 2 , ... x 9 , x 10 , которые удовлетворяют всем перечисленным ниже условиям?

((x 1 ≡ x 2 ) \/ (x 3 ≡ x 4 )) /\ (¬(x 1 ≡ x 2 ) \/ ¬(x 3 ≡ x 4 )) =1

((x 3 ≡ x 4 ) \/ (x 5 ≡ x 6 )) /\ (¬(x 3 ≡ x 4 ) \/ ¬(x 5 ≡ x 6 )) =1

((x 5 ≡ x 6 ) \/ (x 7 ≡ x 8 )) /\ (¬(x 5 ≡ x 6 ) \/ ¬(x 7 ≡ x 8 )) =1

((x 7 ≡ x 8 ) \/ (x 9 ≡ x 10 )) /\ (¬(x 7 ≡ x 8 ) \/ ¬(x 9 ≡ x 10 )) =1

В ответе не нужно перечислять все различные наборы значений x 1 , x 2 , ... x 9 , x 10 , при которых выполнена данная система равенств. В качестве ответа вам нужно указать количество таких наборов.

2.2. Набросок решения.

В системе фигурируют логические функции от следующих выражений:

(x 1 ≡ x 2 ), (x 3 ≡ x 4 ), (x 5 ≡ x 6 ), (x 7 ≡ x 8 ), (x 9 ≡ x 10 )

Подобно тому, как это делается при решении алгебраических уравнений, сделаем замену переменных:

t 1 = x 1 ≡ x 2

t 2 = x 3 ≡ x 4

t 3 = x 5 ≡ x 6

t 4 = x 7 ≡ x 8

t 5 = x 9 ≡ x 10

Общая формула замены (k=1, 2, 3, 4, 5 ):

t k = (x 2 k-1 ≡ x 2 k)

(t 1 \/ t 2 ) /\ (¬t 1 \/ ¬ t 2 ) =1

(t 2 \/ t 3 ) /\ (¬t 2 \/ ¬ t 3 ) =1

(t 3 \/ t 4 ) /\ (¬t 3 \/ ¬ t 4 ) =1

(t 4 \/ t 5 ) /\ (¬t 4 \/ ¬ t 5 ) =1

Уравнения полученной системы имеют вид (k=1, 2, 3, 4 ):

(t k \/ t k+1 ) /\ (¬t k \/ ¬ t k+1 ) =1

Это означает, что из каждых двух переменных t k и t k +1 ровно одна равна 1 и ровно одна равна нулю, т.е. эти переменные имеют разные значения. Таким образом, систему можно еще немного упростить и записать ее так:

¬(t 1 t 2 ) =1

¬(t 2 t 3 ) =1

¬(t 3 t 4 ) =1

¬(t 4 t 5 ) =1

Б. Анализ системы.

В любом решении последней системы значения переменных чередуются. Поэтому такая система имеет ровно два решения: 01010 и 10101 (первая цифра – значение переменной t 1 , вторая - значение t 2 и т.д.).

t k = x 2 k-1 ≡ x 2 k

(здесь k=1, 2, 3, 4, 5 ), то каждому значению t k соответствуют две пары значений переменных x 2 k-1 иx 2 k . Например, t k = 1 в двух случаях: { x 2 k-1 = x 2 k =1 } и { x 2 k-1 = x 2 k =0 }.

2.2.2. Подсчет числа решений

Каждому из двух решений системы для переменных t соответствует 2 5 = 32 решения исходной системы. Поэтому исходная система имеет 2∙32 = 64 решения.

Упражнение. Выпишите все решения. Это немного утомительно, но полезно.

3. Пример из открытого сегмента банка заданий ФИПИ

3.1. Условие задачи.

Задача 2012- B15-2 (открытый сегмент, зачёт 3:2011)

Сколько существует различных наборов значений логических переменных x 1 , x 2 , ..., x 10 , которые удовлетворяют всем перечисленным ниже условиям?

¬(x 1 ≡ x 2) /\ (x 1 \/ x 3) /\ (¬x 1 \/ ¬x 3) =0

¬(x 2 ≡ x 3) /\ (x 2 \/ x 4) /\ (¬x 2 \/ ¬x 4) =0

¬(x 8 ≡ x 9) /\ (x 8 \/ x 10) /\ (¬x 8 \/ ¬x 10) =0

В ответе не нужно перечислять все различные наборы значений x 1 , x 2 , ..., x 10 , при которых выполнена данная система равенств. В качестве ответа вам нужно указать количество таких наборов.

3.2. Набросок решения.

Решение состоит из двух этапов. Сначала попытаемся описать, как устроены все наборы значений переменных, удовлетворяющие данной системе. Далее подсчитаем число таких наборов.

2.2.1. Как устроено множество решений

А. Предварительный этап – упрощаем уравнения.

Заметим, что выражение (a \/ b) /\ (¬a \/ ¬b) равносильно тому, что ровно одна из переменных a и b равна 1, то есть равносильно выражению ¬(a ≡ b). Поэтому каждое выражение вида (x k \/ x k+2) /\ (¬x k \/ ¬x k+2) , где k=1, …, 8, в наших уравнениях можно заменить выражением ¬(x k ≡ x k+2).

Таким образом, наша система эквивалентна системе

¬(x 1 ≡ x 2) /\ ¬(x 1 ≡ x 3) =0

¬(x 2 ≡ x 3) /\ ¬(x 2 ≡ x 4) =0

Поэтому систему можно записать в следующем виде

¬(x 1 ≡ x 2) (x 1 ≡ x 3) =1

¬(x 2 ≡ x 3) (x 2 ≡ x 4) =1

¬(x 8 ≡ x 9) (x 8 ≡ x 10) =1

Б. Анализ системы.

Каждое из уравнений полученной системы имеет вид (k = 1, …, 8):

¬(x k ≡ x k+1) (x k ≡ x k+2) =1

Иными словами, если два соседних элемента набора x k и x k+1 не равны между собой, то x k =x k+2 , то есть элементы x k+1 и x k+2 также не равны между собой. Таким образом, набор удовлетворяет системе, тогда и только тогда, когда он обладает следующими свойствами. В начале набора стоит несколько (может быть, одно) одинаковых значений (назовем это"головой" набора). Затем (после первого появления нового числа) значения в наборе чередуются ("хвост" набора).

Пример решения: 1111010101 (в этой последовательности первая цифра – значение переменной x 1 , вторая цифра – значение переменной x 2 , и т.д.)

Здесь голова набора состоит из четырех единиц, а хвост – это последовательность 01010101. в данном примере длина головы равна 4.

Важное наблюдение. Для каждой непустой головы есть ровно один хвост, образующий вместе с ней решение. Действительно, первая цифра такого хвоста – это цифра, противоположная цифрам головы. А дальше цифры в хвосте чередуются.

3.2.2. Как устроено множество решений

В соответствии с важным наблюдением, количество решений совпадает с количеством возможных голов. Очевидно, существует 10 голов, состоящих из единиц (1, 11, 111, …, 1111111111) и столько же голов, состоящих из нулей.

Замечание. Как видим, сложность решения задачи не зависит от числа переменных и уравнений. Если понятно, как устроено множество решений, подсчитать количество решений для аналогичной системы, скажем, с 20-ю переменными, не сложнее, чем в уже рассмотренном случае.

4. Обсуждение

4.1. Какие знания/умения/навыки нужны ученику, чтобы решить эту задачу

Эта задача – одна из самых сложных в экзамене, если не самая сложная. Для ее решения ученик должен уметь

Преобразовывать логические выражения (включая выполнение замены переменных);

Переводить формальное описание, в виде системы логических условий, на нормальный, "человеческий" язык и

После того, как выяснено, что за наборы удовлетворяют системе, подсчет их числа относительно прост.

Наиболее трудным для усвоения, видимо, является второе из перечисленных требований – оно не формализуется, от ученика, как правило, требуется догадка.

Придумывайте свои подходы, применяйте их и сообщайте нам!

4.2.1. Разбирать эту задачу стоит только с учениками, которые достаточно свободно владеют преобразованиями логических выражений. Отметим несколько полезных преобразований (они встречались в разобранных примерах):

¬a \/ b равносильно a b

(a b) /\ (b a) равносильно a ≡ b

(¬a \/ b) /\ (a\/¬b) равносильно a ≡ b

(a \/ b) /\ (¬a \/ ¬b) равносильно ¬(a ≡ b).

Подробнее о преобразованиях логических выражений написано здесь [см. logic01. doc ]

Кроме того, полезно потренироваться в выполнении замен в логических выражениях. Отметим, что это делается точно так же, как и замены в уравнениях, которые встречаются в курсе математики.

4.2.2. Самое трудное – сообразить, что из себя представляет множество решений. В разделах 5 и 6 разобрано несколько примеров. Другие полезные примеры и рекомендации можно найти на сайте К.Ю.Полякова.

4.2.3. Подсчет количества решений – несложная комбинаторная задача. Сильные ученики могут сообразить, как провести подсчет, даже не обладая специальными знаниями. Стоит повторить формулы произведения возможностей и формулу суммы арифметической прогрессии.

4.2.4. Таким образом, план подготовки может быть примерно таким.

1) Повторить логические преобразования и элементы комбинаторики.

2) Порешать задачи и попрактиковаться в переводе формального описания, в виде системы логических условий, на нормальный, "человеческий" язык.

Точного алгоритма действий, гарантированно приводящего к успеху здесь нет. Первая цель – понять, что собой представляет множество решений системы. Для этого систему бывает полезно преобразовать (упростить) систему, используя тождественные преобразования и замены переменных. Затем – подсчитать количество элементов во множестве решений.

Во многих случаях система состоит из однотипных уравнений, каждое из которых связывает небольшое число переменных (две-три-четыре), при том, что в системе может быть 10 и более переменных. Обычно, количество переменных не является источником сложности, оно является параметром решения. Если не получается решить задачу в общем виде, можно попробовать перебрать все решения для системы с небольшим количеством переменных. Это может подсказать, как выглядит решение в общем виде.

5. Другие задачи

Задача 2012- B15-3

Сколько существует различных наборов значений логических переменных x 1 , x 2 , ..., x 5 , которые удовлетворяют всем перечисленному ниже условию?

(x 1 x 2) /\ (x 2 x 3) /\ (x 3 x 4) /\ (x 4 x 5) = 1

В ответе не нужно перечислять все различные наборы значений x 1 , x 2 , ..., x 5 , при которых выполнена данная система равенств. В качестве ответа вам нужно указать количество таких наборов.

Решение. Очевидно, выполнены следующие соотношения:

(x 1 x 2) = 1

(x 2 x 3) = 1

(x 3 x 4) = 1

(x 4 x 5) = 1

Допустим, что набор {a1, a2, a3. a4, a5} – решение нашего уравнения. Допустим, что a4 = 1. Тогда, из уравнения

(x 4 x 5) = 1

следует, что a5 = 1 (напомним: 1 → 0 ложно!). Допустим теперь, что а3=1. Из условия

(x 3 x 4) = 1

следует, что a4=1 и, значит, по доказанному, a5 = 1.

Аналогично можно показать (проверьте сами!), что если в решении встречается 1, то далее идут только единицы.

Таким образом, решения уравнения – это наборы, в которых сначала идут нули, а потом – единицы.

Важно не забыть про «особые» наборы – 00000 и 11111. Они тоже годятся.

Таким образом, вот все решения уравнения:

00000, 00001, 00011, 00111, 01111, 11111

Каждое решение полностью описывается количеством единиц в нем. Это количество может быть от 0 до 5. Количество решений – 6.

Задача 2012- B15-4

Сколько существует различных наборов значений логических переменных x 1 , x 2 , ..., x 5 , z 1 , ..., z 4 , которые удовлетворяют всем перечисленному ниже условию?

(x 1 x 2) /\ (x 2 x 3) /\ (x 3 x 4) /\ (x 4 x 5) = 1 (1)

(z 1 z 2) /\ (z 2 z 3) /\ (z 3 z 4) = 1 (2)

В ответе не нужно перечислять все различные наборы значений x 1 , x 2 , ..., x 5 , z 1 , ..., z 4 , при которых выполнена данная система равенств. В качестве ответа вам нужно указать количество таких наборов.

Решение. Про такие системы говорят, что переменные в них «разделенные»: x 1 , …, x 5 встречаются только в уравнении (1), а z 1 , …, z 4 - только в уравнении (2). Из решения задачи 3 следует, что уравнению (1) удовлетворяют 6 наборов значений переменных x 1 , x 2 , ..., x 5 , а уравнению (2) – 5 наборов значений переменных z 1 , …, z 4 Каждый из этих наборов для { x i } может образовать решение с любым из наборов для { z i }. Поэтому общее количество решений равно 6∙5 = 30.

6. Задачи для самостоятельного решения

Задача 2012- B15-Т1

Сколько существует различных наборов значений логических переменных x 1 , x 2 , ..., x 500 , которые удовлетворяют всем перечисленному ниже условию?

(x 1 x 2) /\ (x 2 x 3) /\ … /\ (x 499 x 500) = 1

В ответе не нужно

Задача 2012- B15- Т2

Сколько существует различных наборов значений логических переменных x 1 , x 2 , ..., x 1000 , которые удовлетворяют всем перечисленному ниже условию?

(x 2 x 1) /\ (x 3 x 2) /\ … /\ (x 1000 x 999) = 1

В ответе не нужно перечислять все различные наборы значений x 1 , x 2 , ..., x 1000 , при которых выполнена данная система равенств. В качестве ответа вам нужно указать количество таких наборов.

Задача 2012- B15- Т3

Сколько существует различных наборов значений логических переменных x 1 , x 2 , ..., x 11 , которые удовлетворяют всем перечисленному ниже условию?

(x 1 x 3) /\ (x 3 x 5) /\ … /\ (x 9 x 11) = 1

(x 2 x 4) /\ (x 4 x 6) /\ … /\ (x 8 x 10) = 1

В ответе не нужно перечислять все различные наборы значений x 1 , x 2 , ..., x 11 , при которых выполнена данная система равенств. В качестве ответа вам нужно указать количество таких наборов.

Задача 2012- B15- Т4

Сколько существует различных наборов значений логических переменных x 1 , x 2 , ..., x 100 , которые удовлетворяют всем перечисленному ниже условию?

(x 1 x 3) /\ (x 3 x 5) /\ … /\ (x 99 x 101) = 1

(x 2 x 4) /\ (x 4 x 6) /\ … /\ (x 98 x 100) = 1

В ответе не нужно перечислять все различные наборы значений x 1 , x 2 , ..., x 500 , при которых выполнена данная система равенств. В качестве ответа вам нужно указать количество таких наборов.

Ответы: Т1. 501; Т2. 1001; Т3. 42; Т4. 2652.