Космос - одно из самых загадочных понятий в мире. Если ночью посмотреть на небо, можно увидеть несметное количество звёзд. Да, наверное, каждый из нас слышал, что во Вселенной больше звёзд, чем песчинок в Сахаре. И учёные с древних времён тянулись к ночному небу, стараясь разгадать загадки, скрывающиеся за этой чёрной пустотой. Начиная с древних времён они совершенствовали методы измерения космических расстояний и свойств звёздного вещества (температуры, плотности, скорости вращения). В этой статье мы расскажем о том, что такое параллакс звезд и как он применяется в астрономии и астрофизике.

Явление параллакса тесно связано с геометрией, но прежде чем рассмотреть геометрические законы, лежащие в основе этого явления, окунёмся в историю астрономии и разберёмся в том, кто и когда открыл это свойство движения звёзд и первым применил его на практике.

История

Параллакс как явление изменения положения звёзд в зависимости от расположения наблюдателя известно очень давно. Ещё Галилео Галилей писал об этом в далёком Средневековье. Он лишь предполагал, что если бы можно было заметить изменение параллакса для далёких звёзд, это было бы доказательством того, что Земля вращается вокруг Солнца, а не наоборот. И это было сущей правдой. Однако доказать это Галилео не смог из-за недостаточной чувствительности тогдашней аппаратуры.

Ближе к нашим дням, в 1837 году, Василий Яковлевич Струве провёл серию экспериментов по измерению годичного параллакса для звезды Веги, входящей в созвездие Лира. Позже эти измерения признали недостоверными, когда в следующем после публикации Струве году, 1838-м, Фридрих Вильгельм Бессель измерил годичный параллакс для звезды 61 Лебедя. Поэтому, как бы это ни было печально, приоритет открытия годичного параллакса принадлежит всё-таки Бесселю.

Сегодня параллакс используется как основной метод измерения расстояний до звёзд и при достаточно точной измерительной аппаратуре даёт результаты с минимальной погрешностью.

Нам следует перейти к геометрии перед непосредственным рассмотрением того, что такое метод параллакса. И для начала вспомним самые азы этой интересной, хотя и нелюбимой многими науки.

Основы геометрии

Итак, то, что нам необходимо знать из геометрии для понимания явления параллакса, - это то, как связаны значения углов между сторонами треугольника и их длины.

Начнём с того, что представим себе треугольник. В нём есть три соединяющихся прямых и три угла. И для каждого разного треугольника - свои величины углов и длин сторон. Нельзя изменить размер одной или двух сторон треугольника при неизменных значениях углов между ними, это одна из фундаментальных истин геометрии.

Представим, что перед нами стоит задача узнать значение длин двух сторон, если мы знаем только длину основания и величины углов, прилегающих к нему. Это возможно с помощью одной математической формулы, связывающей значения длин сторон и величин углов, лежащих напротив них. Итак, представим, что у нас есть три вершины (можете взять карандаш и нарисовать их), образующие треугольник: A, B, C. Они образуют три стороны: AB, BC, CA. Напротив каждой из них лежит по углу: угол BCA напротив AB, угол BAC напротив BC, угол ABC напротив CA.

Формула, которая связывает все эти шесть величин вместе, выглядит так:

AB / sin(BCA) = BC / sin(BAC) = CA / sin(ABC).

Как мы видим, всё не совсем просто. У нас откуда-то появился синус углов. Но как нам найти этот синус? Об этом мы расскажем ниже.

Основы тригонометрии

Синус является тригонометрической функцией, определяющей координату Y угла, построенного на координатной плоскости. Чтобы показать это наглядно, обычно чертят координатную плоскость с двумя осями - OX и OY - и отмечают на каждой из них точки 1 и -1. Эти точки расположены на одинаковом расстоянии от центра плоскости, поэтому через них можно провести окружность. Итак, мы получили так называемую единичную окружность. Теперь построим какой-нибудь отрезок с началом в начале координат и концом на какой-нибудь точке нашей окружности. Конец отрезка, который лежит на окружности, имеет определённые координаты на осях OX и OY. И значения этих координат и будут представлять собой соответственно косинус и синус.

Мы выяснили, что такое синус и как его можно найти. Но на самом деле этот способ чисто графический и создан скорее, чтобы понять саму суть того, что представляют собой тригонометрические функции. Он может быть эффективен для углов, не имеющих бесконечных рациональных значений косинуса и синуса. Для последних же более эффективен другой метод, который основа на применении производных и биномиального вычисления. Он носит название ряда Тейлора. Рассматривать этот способ мы не будем потому, как он достаточно сложен для вычисления в уме. Ведь быстрые вычисления - это работа для компьютеров, которые созданы для этого. Ряд Тейлора используется в калькуляторах для вычисления многих функций, включая синус, косинус, логарифм и так далее.

Всё это довольно интересно и затягивающе, но нам пора двигаться дальше и вернуться к тому, на чём мы закончили: на задаче по вычислению значений неизвестных сторон треугольника.

Стороны треугольника

Итак, вернёмся к нашей задаче: нам известны два угла и сторона треугольника, к которой эти углы прилежат. Нам нужно узнать всего лишь один угол и две стороны. Самым лёгким представляется нахождение угла: ведь сумма всех трёх углов треугольника равна 180 градусам, а значит, можно легко найти третий угол, вычтя из 180 градусов значения двух известных углов. А зная значения всех трёх углов и одной из сторон, можно найти длины двух других сторон. Вы можете проверить это самостоятельно на примере любого из треугольников.

А теперь наконец поговорим о параллаксе как о способе измерения расстояния между звёздами.

Параллакс

Это, как мы уже выяснили, один из самых простых и действенных методов измерения межзвёздных расстояний. Параллакс основан на изменении положения звезды в зависимости от расстояния до неё. Например, измерив угол видимого положения звезды в одной точке орбиты, а затем в прямо ей противоположной, мы получим треугольник, в котором известна длина одной стороны (расстояние между противоположными точками орбиты) и два угла. Отсюда мы сможем найти две оставшиеся стороны, каждая из которых равна расстоянию от звезды до нашей планеты в разных точках её орбиты. В этом и заключается метод, с помощью которого можно вычислить параллакс звезд. Да и не только звезд. Параллакс, эффект которого оказывается на деле очень простым, несмотря на это, используется во многих своих вариациях в совершенно разных областях.

В следующих разделах рассмотрим подробнее области применения параллакса.

Космос

Мы говорили об этом не раз, ведь параллакс - это исключительное изобретение астрономов, призванное измерять расстояния до звезд и прочих космических объектов. Однако тут не всё так однозначно. Ведь параллакс - это метод, у которого есть свои вариации. Например, различают суточный, годичный и вековой параллаксы. Можно догадаться, что все они различаются промежутком времени, которое проходит между этапами измерений. Нельзя сказать, что увеличение временного промежутка увеличивает точность измерения, потому как цели у каждого вида этого метода свои, а точность измерений зависит лишь от чувствительности аппаратуры и выбранного расстояния.

Суточный параллакс

Суточный параллакс, расстояние с помощью которого определяется с помощью угла между прямыми, идущими к звезде из двух разных точек: центра Земли и выбранной точки на Земле. Так как мы знаем радиус нашей планеты, не составит особого труда, используя угловой параллакс, вычислить расстояние до звезды, пользуясь описанными нами ранее математическим методом. В основном суточным параллаксом пользуются для измерения недалёких объектов, таких как планеты, карликовые планеты или астероиды. Для более больших используют следующий метод.

Годичный параллакс

Годичный параллакс - это всё тот же метод измерения расстояний с той лишь разницей, что он сфокусирован на измерение расстояний до звёзд. Это как раз тот случай параллакса, что мы рассматривали в примере выше. Параллакс, определение расстояния до звезды с помощью которого может быть довольно точным, должен обладать одной важной чертой: расстояние, с которого измеряется параллакс, должно быть чем больше, тем лучше. Годичный параллакс удовлетворяет этому условию: ведь между крайними точками орбиты расстояние достаточно велико.

Параллакс, примеры методов которого мы рассмотрели, безусловно, представляет собой важную часть астрономии и служит незаменимым инструментом в измерении расстояний до звёзд. Но на деле сегодня пользуются лишь годичным параллаксом, так как суточный может заменить более продвинутая и быстрая эхолокация.

Фотография

Пожалуй, самым известным видом фотографического параллакса можно считать бинокулярный параллакс. Вы его наверняка замечали и сами. Если поднести к глазам палец и по очереди закрывать каждый глаз, можно заметить, что угол зрения на объект меняется. То же самое происходит и при съёмке близких объектов. В объектив мы видим изображение под одним углом зрения, но на самом деле фотография получится с немного другим углом, так как есть разница в расстоянии между объективом и видоискателем (отверстием, через которое мы смотрим, чтобы сделать фотографию).

Перед тем как мы закончим эту статью - пара слов о том, чем же может быть полезно такое явление, как оптический параллакс, и почему стоит узнать о нём больше.

Почему это интересно?

Для начала, параллакс - это уникальное физическое явление, позволяющее нам без особого труда узнать многое об окружающем нас мире и даже о том, что находится за сотни световых лет от него: ведь с помощью этого явления можно вычислять и размеры звёзд.

Как мы уже убедились, параллакс не такое уж далёкое от нас явление, он окружает нас везде, и с помощью него мы видим так, как есть. Это, безусловно, интересно и захватывающе, и именно поэтому стоит обратить внимание на метод параллакса, хотя бы из любопытства. Знание никогда не бывает лишним.

Заключение

Итак, мы разобрали, в чём заключается суть параллакса, почему для определения расстояния до звёзд необязательно иметь сложную аппаратуру, а лишь телескоп и знание геометрии, как это применяется в нашем организме и почему нам может быть это так важно в повседневной жизни. Надеемся, представленная информация была вам полезна!

В связи с большим распространением среди людей, близких к стрелковому спорту (снайпер - тоже спортсмен) и охоте, большого количества разнообразных оптических приборов (биноклей, зрительных труб, телескопических и коллиматорных прицелов) все чаще стали возникать вопросы, связанные с качеством изображения, даваемого такими приборами, а также о факторах, влияющих на точность прицеливания. Так как народ у нас все больше с образованием и/или имеющий доступ к Интернету, то большинство все же где-то слышало или видело такие связанные с данной проблемой слова, как ПАРАЛЛАКС, АБЕРРАЦИЯ, ДИСТОРСИЯ, АСТИГМАТИЗМ и т.п. Так что же это такое и так ли оно на самом деле страшно?

Начнем с понятия аберрации.

Любой реальный оптико-механический прибор является произведенной человеком из каких-то материалов ухудшенной версией идеального прибора, модель которого рассчитывается исходя из простых законов геометрической оптики. Так в идеальном приборе каждой ТОЧКЕ рассматриваемого предмета соответствует определенная ТОЧКА изображения. На самом же деле это не так. Точка никогда не изображается точкой. Ошибки или погрешности изображений в оптической системе, вызываемые отклонениями луча от того направления, по которому он должен был бы идти в идеальной оптической системе, называются аберрациями.

Аберрации бывают разные. Наиболее распространены следующие виды аберраций оптических систем: сферическая аберрация, кома, астигматизм и дисторсия. К аберрациям также относятся кривизна поля изображения и хроматическая аберрация (связана с зависимостью показателя преломления оптической среды от длины волны света).

Вот что написано о различных видах аберраций в самом общем виде в учебнике для техникумов (не потому привожу этот источник, что сомневаюсь в интеллектуальных способностях читателей, а потому, что материал здесь изложен наиболее доступно, лаконично и грамотно):

"Сферическая аберрация - проявляется в несовпадении главных фокусов для лучей света, прошедших через осесимметричную систему (линзу, объектив и т.д.) на разных расстояниях от оптической оси системы. Вследствие сферической аберрации изображение светящейся точки имеет вид не точки, а окружности с ярким ядром и ослабевающим к периферии ореолом. Исправление сферической аберрации осуществляется подбором определенного сочетания положительных и отрицательных линз, обладающих одинаковыми аберрациями, но с разными знаками. Исправить сферическую аберрацию можно в одиночной линзе используя асферические преломляющие поверхности (вместо сферы, например, поверхность параболоида вращения или что-то подобное - Е.К.).

Кома. Кривизна поверхности оптических систем кроме сферической аберрации вызывает также и другую погрешность - кому. Лучи, идущие от точки объекта, лежащей вне оптической оси системы, образуют в плоскости изображения в двух взаимно перпендикулярных

направлениях сложное несимметричное пятно рассеяния, напоминающее по виду запятую (comma, англ. - запятая). В сложных оптических системах кому исправляют совместно со сферической аберрацией подбором линз.

Астигматизм заключается в том, что сферическая поверхность световой волны при прохождении оптической системы может деформироваться, и тогда изображение точки, не лежащей на главной оптической оси системы, представляет собой уже не точку, а две взаимно перпендикулярные линии, расположенные на разных плоскостях на некотором расстоянии друг от друга. Изображения точки в промежуточных между этими плоскостями сечениях имеют вид эллипсов, одно из них имеет форму круга. Астигматизм обусловлен неодинаковостью кривизны оптической поверхности в разных плоскостях сечения падающего на нее светового пучка. Астигматизм может быть исправлен таким подбором линз, чтобы одна компенсировала астигматизм другой. Астигматизмом (впрочем, как любыми другими аберрациями) может обладать и человеческий глаз.

Дисторсия - это аберрация, которая проявляется в нарушении геометрического подобия между предметом и изображением. Она обусловлена неодинаковостью линейного оптического увеличения на разных участках изображения. Положительная дисторсия (увеличение в центе меньше чем по краям) носит название подушкообразной. Отрицательная - бочкообразной. Кривизна поля изображения заключается в том, что изображение плоского предмета получается резким не в плоскости, а на искривленной поверхности. Если линзы, входящие в состав системы, можно считать тонкими, и система исправлена на астигматизм, то изображение плоскости, перпендикулярной оптической оси системы представляет собой сферу радиуса R, причем 1/R=<СУММА ПО i произведений fini>, где fi- фокусное расстояние i-ой линзы, ni - показатель преломления ее материала. В сложной оптической системе кривизну поля исправляют, сочетая линзы с поверхностями разной кривизны так, чтобы величина 1/R равнялась нулю.

Хроматическая аберрация обусловлена зависимостью показателя преломления прозрачных сред от длины волны света (дисперсия света). Вследствие ее проявления изображение предмета, освещенного белым светом, становится окрашенным. Для уменьшения хроматической аберрации в оптических системах применяют детали с различной дисперсией, что приводит к взаимной компенсации этой аберрации…"(с)1987, А.М. Морозов, И.В. Кононов, "Оптические приборы", М., ВШ, 1987.

Что же из всего вышеизложенного важно для уважаемого читателя?

  1. Сколь-нибудь серьезное влияние на точность прицеливания в оптический прицел могут оказать сферическая аберрация, кома, астигматизм и хроматическая аберрация. Но, как правило, уважающие себя фирмы делают все от них зависящее, чтобы максимально исправить эти аберрации. Критерием исправления аберраций является предел разрешения оптической системы. Измеряется он в угловых величинах, и чем он меньше (при равном увеличении), тем лучше прицел исправлен на аберрации.
  2. Дисторсия не оказывает влияния на разрешение прицела и проявляется в некотором искажении резко видимого изображения. Многие могли сталкиваться с такими приборами, как дверные глазки и фотообъективы типа "Рыбий глаз", в которых дисторсия специально не исправляется. Как правило, дисторсия в оптических прицелах также исправляется. Но некоторое наличие ее в прицеле, как будет сказано ниже, иногда очень даже полезно.

Теперь о понятии параллакса.

"Параллаксом называется кажущееся смещение наблюдаемого предмета вследствие перемещения глаза стрелка в какую-либо сторону; появляется оно в результате изменения угла, под которым был виден данный предмет до перемещения глаза стрелка. В результате кажущегося смещения прицельной шпильки или перекрестья получается ошибка в наводке, эта параллактическая ошибка и есть так называемый параллакс.

Чтобы избежать параллакса, следует при прицеливании посредством телескопа приучить себя ставить глаз всегда в одинаковом положении по отношению к окуляру, что достигается прикладистой ложей и частым упражнением в прицеливании. Современные оружейные телескопы позволяют перемещать глаз вдоль оптической оси окуляра и в стороны от нее до 4 мм без параллактической ошибки в прицеливании.

В.Е. Маркевич 1883-1956 гг.
"Охотничье и спортивное стрелковое оружие"

Это была цитата из "классика". С точки зрения человека середины века она абсолютно верна. Но время идет… Вообще в оптике параллаксом называется явление, обусловленное тем, что один и тот же объект наблюдается одним наблюдателем под разными углами. Так на параллаксе основано определение дальности оптическими дальномерами и артиллерийскими буссолями, стереоскопичность человеческого зрения также основана на параллаксе. Параллакс оптических систем обусловлен не одинаковостью диаметров выходного зрачка прибора (в современных прицелах 5-12 мм) и человеческого глаза (1,5-8 мм в зависимости от освещенности фона). Параллакс существует в любом оптическом приборе, даже максимально исправленном на аберрации. Другое дело, что параллакс можно компенсировать искусственным введением аберрации (дисторсия) в оптику окулярной части прицела так, что общая дисторсия прицела равна нулю, а дисторсия изображения сетки такова, что компенсирует параллакс прицела во всей плоскости входного зрачка. Но эта компенсация происходит только для изображения предмета, находящегося на расстоянии практической бесконечности прицела (величина дается в паспорте). Вот почему на некоторых профессиональных прицелах имеется т.н. устройство отстройки от параллакса (Parallax Adjust-ment Knob, Ring, etc.) Суть его в том, чтобы изменить расстояние практической бесконечности, т.е. грубо - навестись на резкость. В не исправленных на параллакс прицелах лучше всего действительно целиться глазом, находящимся строго в центре выходного зрачка прицела.

Как же узнать, исправлен ваш прицел на параллакс или нет? Очень просто. Необходимо навести центр сетки прицела на объект, находящийся на бесконечности, зафиксировать прицел, и, перемещая глаз по всему выходному зрачку прицела, наблюдать за взаимным положением изображения объекта и сетки прицела,. Если взаимное положение объекта и сетки не изменяется, то вам крупно повезло - прицел исправлен на параллакс. Люди, имеющие доступ к лабораторному оптическому оборудованию могут использовать оптическую скамью и лабораторный коллиматор для создания бесконечно удаленной точки визирования. Остальные могут использовать пристрелочный станок и любой малогабаритный объект, расположенный на расстоянии больше 300 метров.

Этим же нехитрым способом можно определять наличие или отсутствие параллакса в коллиматорных прицелах. У этих прицелов отсутствие параллакса - большой плюс, так как скорость прицеливания в таких моделях существенно возрастает за счет использования всего диаметра оптики.

Из всего вышесказанного вывод напрашивается такой:

Уважаемые пользователи оптических прицелов! Не забивайте себе головы такими терминами, как астигматизм, дисторсия, хроматизм, аберрация, кома и т.п. Пусть это остается уделом оптиков-конструкторов и расчетчиков. Все, что вам надо знать о своем прицеле, это исправлен он на параллакс, или нет. Выясните это, проведя нехитрый опыт, описанный в данной статье.

Желаю всем получить положительный результат.

Егор К.
Редакция 30 сентября 2000 г.
Блокнот Снайпера

  • Статьи » Профессионалы
  • Mercenary 4617 0

Давайте оставим в стороне физику явления параллакса (кому интересно, найдут, где о нем почитать). Главное, оно существует и осложняет жизнь поклонникам пневматики и арбалетов. Мало того, что неудобно целиться, так еще и меткость здорово страдает.

Вот так выглядит смещение точки попадания при возникновении классических «лун» параллакса.

Откуда же он вообще берется, кто виноват и что делать?

Вызвано это стремлением эйрганнеров и некоторых стрелков из арбалетов к обзаведению «крутыми» длиннофокусными прицелами большой кратности. Именно они на коротких (характерных для этого оружия) дистанциях чрезвычайно подвержены появлению лун, уплыванию картинки и т.п. И именно на них производителям приходится прибегать к усложнению конструкции за счет введения механизмов отстройки от параллакса (фокусировки). Как по простенькой технологии АО (на объективе), так и высококлассной SF (маховик отстройки порой представляет собой настоящий штурвальчик сбоку прицела).

На кой черт на арбалете или обычной пневматической пружинно-поршневой винтовке, предназначенной для «плинка» или охоты, 9-ти, а то и 12-кратный прицел? Ладно, при высокоточной стрельбе, производимой с упора и даже станка. При стрельбе с рук, зачастую навскидку, мы, кроме параллакса, получаем скачущий по громадной мишени крест и вызванное этим желание «подловить» ее центр, которое является одной из основных ошибок прицеливания. А вот для огнестрельщиков почему-то эта проблема не очень актуальна.

Как это выглядит у нарезного огнестрела, для которого, собственно, изначально и предназначены ОП? Во-первых, стрельба ведется на дистанциях от 100, ну, пусть от 50 метров, на которых параллакс уже не наблюдается. Во-вторых, кратность у армейских и охотничьих образцов, как правило, невелика. Снайперский прицел ПСО-1 (СВД) имеет характеристики 4х24.

У меня (не на пневматике) стоит его более современная «гражданская» версия 6х36, и приобретение его вызвано возрастным ухудшением зрения. Здесь повыше светосила объектива за счет большей апертуры, но главное, имеется диоптрическая подстройка окуляра (то самое колесико со знаками «плюс» и «минус»). В основном стрельба ведется на дистанциях от 80 и до 200 м (прямой выстрел), а дальше на реальной охоте никто и не будет стрелять, хотя диаметр круга, совпадающий с убойной зоной крупного зверя, составляет не менее 15 см (5 МОА!). Энтузиасты «высокоточки», варминтинга и некоторых видов горной охоты действительно используют мощные ОП, но и стрельба в абсолютном большинстве случаев ведется с упора, на серьезные дистанции, совершенно из другого оружия плюс стрелки там не нам чета. Да и SF-механика отстройки от параллакса у них-то, как правило, присутствует.

На всех охотничьих арбалетах, включая высококлассные, штатный прицел также имеет скромные характеристики 4х32 (см. « «). Как раз потому, что дистанции результативной стрельбы от 20 до 50 метров. Кроме того, если в арбалетном спорте диаметр «десятки» составляет 4,5 мм (!), то у кабана или оленя килл-зона – все те же 15 см. Ну и зачем здесь кратность 9х?

Кстати, для спортивных арбалетов (как и винтовок) — будете смеяться — любая оптика вообще под запретом, а используются старые добрые «кольцевые» прицелы. Представьте уровень стрелковой подготовки профессиональных арбалетчиков и пулевиков, среди которых едва не большинство — девушки!

В общем, если вы не поклонник БР и прочих высокоточных дисциплин, выбирайте как максимум 6-кратный прицел. Как пример — «Пилад P4x32LP», с «тактическими» барабанчиками ввода поправок, диоптрийной подстройкой и подсветкой сетки.

Этих опций вполне достаточно. Панкратические прицелы изначально более нежны, а большая кратность на любых разумных даже для «супермагнума» дистанциях в общем-то и не нужна, разве что при стрельбе по спичкам (есть и такая). По большому счету, прицел на верхнем фото не что иное, как известный всем огнестрельщикам «загонник», успешно применяемый при облавных охотах по кабану или оленю на дистанциях до 150 метров.

Более того, литера «P» в названии свидетельствует, что прицел предназначен и для пружинно-поршневой пневматики. Которой свойственно явление так называемой «двойной» (разнонаправленной) отдачи, не встречающееся больше ни на одном виде оружия.


Неплохую устойчивость к передрягам из бюджетных вариантов показали также и прицелы «Липерс» (не длиннофокусники). За вполне разумные по нынешним временам деньги можно приобрести прибор достаточно высокого уровня (на фото «Leapers Bug Buster IE 6X32 AO Compact»).

Кроме диоптрийной подстройки под особенности зрения, тут уже присутствуют просветленная оптика, многоцветная ступенчатая подсветка сетки «милдот», герметичный азотозаполненный корпус, «тактические» барабанчики ввода поправок и, главное, отстройка от параллакса.

А вообще учтите, что усложнение конструкции за счет введения дополнительных опций (изменяемая кратность, отстройка от параллакса) ухудшают показатели живучести у большинства ОП бюджетного сегмента. Действительно высококлассные оптико-механические устройства стоят уже совсем другие деньги, за которые можно купить мешок обычных пневматических винтовок или пару-тройку арбалетов.

К явлению параллакса приводят также две основные ошибки при прицеливании:

  1. Неоптимальное расстояние зрачка от линзы окуляра.
  2. Смещение зрачка от оптической оси ОП (не по центру)

Первое лечится настройкой расстояния при установке прицела. Проще говоря, подвигайте не закрепленный ОП вперед-назад до тех пор, пока картинка не совпадет с внутренним диаметром зрительной трубы, без темной области по краям изображения.

Второе достаточно легко исправить за счет тренировок. Тренируйте правильную вкладку (можно без стрельбы): вскидывайте винтовку в боевое положения и прицеливайтесь. И так десятки раз, каждый день. До тех пор, пока на автомате не начнете выставлять зрачок четко по центру окуляра.

Маленький секрет, о котором, как ни странно, не все знают. Присмотритесь к поведению стрелков-стендовиков. Они заранее наклоняют голову в позицию, которую она займет при прицеливании, а затем вскидывают оружие, и гребень приклада просто занимает свою постоянное место под щекой. При этом двигать головой, стараясь найти правильное положение, уже не нужно.

Параллакс - явление, обнаруживаемое при наблюдении окружающего пространства, заключающееся в видимом изменении положения одних неподвижных предметов относительно других, расположенных на разных расстояниях друг от друга, при перемещении глаза наблюдателя. С явлением параллакса мы встречаемся на каждом шагу. Например, выглядывая из окна вагона движущегося поезда, мы замечаем, что ландшафт, как бы вращается вокруг удалённого центра в направлении, обратном движению поезда. Близкие предметы уходят из поля зрения быстрее, чем дальние, поэтому и создается впечатление вращения ландшафта. Если предметы лежат в одной плоскости, то параллакс исчезнет, не будет различных перемещений предметов относительно друг друга при перемещении глаза.

Параллаксом в прицелах называют несовпадение плоскости изображения цели, сформированного объективом с плоскостью прицельной сетки прицела. Наклон сетки вызывает параллакс на краях поля зрения. Это называют косым параллаксом. Отсутствие в прицеле плоского изображения цели по всему полю зрения, обусловленного некачественным изготовлением линз и сборки прицела, или при значительных аберрациях оптической системы, вызывает "неустранимый параллакс". Обычно прицел изготавливается таким образом, что изображение удалённой на 100-200 м цели проецируется объективом в плоскость, где расположена прицельная сетка. В этом случае диапазон параллакса как бы располовинивается между дальними и ближними целями. При приближении цели к стрелку её изображение тоже смещается ближе к стрелку (в оптической системе цель и её изображение движутся в одну и ту же сторону). Таким образом, в общем случае для прицела характерно несовпадение изображения цели и сетки. При смещении глаза перпендикулярно оси прицела изображение цели движется в большинстве случаев в ту же сторону относительно центра сетки. Цель как бы "съезжает" с прицельной точки, при наклонах, покачивании головы "мечется" вокруг прицельной точки. Кроме того, сетка и цель не видны одновременно резко, что ухудшает комфортность прицеливания и сводит к минимуму основное преимущество телескопического прицела перед обычным. Из-за этого прицел без фокусировки на дистанцию стрельбы (без устройства устранения параллакса) позволяет осуществить высокоточный выстрел только на одной конкретной дистанции. Качественный прицел с увеличением большим, чем 4х обязательно должен иметь устройство для устранения параллакса. Без этого достаточно трудно найти и удерживать глаз в нужном положении, на линии, соединяющей прицельную метку и точку на цели, сетка в общем случае не находится в центре поля зрения. Небольшое движение прицельной сетки вместе с изображением цели можно обнаружить при покачивании головой, особенно при смещении глаза от расчетного положения выходного зрачка, что объясняется наличием дисторсии в окуляре прицела. Устранить это можно только в прицелах, имеющих параболическую линзу в окуляре. Фокусировкой прицела называют операцию установки изображения, даваемого объективом в заданную плоскость - плоскость прицельной сетки. Расчётным путём определяется зависимость между продольным сдвигом фокусирующей линзы и величиной смещения изображения. Обычно в прицелах перемещают или весь объектив или его внутренний компонент, расположенный вблизи сетки. На оправе объектива прицела наносится шкала, обозначающая дистанцию фокусировки в метрах. Переместив объектив на нужное вам деление (дистанцию стрельбы) вы устраняете параллакс. Прицел, содержащий устройство фокусировки, безусловно, более высококлассное и сложное изделие, поскольку перемещающаяся линза должна сохранять свое положение в пространстве относительно собственной оси, то есть сохранять неизменной линию визирования. Это центрирование фокусирующего компонента объектива относительно геометрической оси трубы объектива достигается за счёт соблюдения жёстких допусков при изготовлении фокусирующего компонента.

Как же узнать, исправлен ваш прицел на параллакс или нет? Очень просто. Необходимо навести центр сетки прицела на объект, находящийся на бесконечности, зафиксировать прицел, и, перемещая глаз по всему выходному зрачку прицела, наблюдать за взаимным положением изображения объекта и сетки прицела,. Если взаимное положение объекта и сетки не изменяется, то вам крупно повезло - прицел исправлен на параллакс. Люди, имеющие доступ к лабораторному оптическому оборудованию могут использовать оптическую скамью и лабораторный коллиматор для создания бесконечно удаленной точки визирования. Остальные могут использовать пристрелочный станок и любой малогабаритный объект, расположенный на расстоянии больше 300 метров. Этим же нехитрым способом можно определять наличие или отсутствие параллакса в коллиматорных прицелах. У этих прицелов отсутствие параллакса - большой плюс, так как скорость прицеливания в таких моделях существенно возрастает за счет использования всего диаметра оптики.

В связи с большим распространением среди людей, близких к стрелковому спорту (снайпер - тоже спортсмен) и охоте, большого количества разнообразных оптических приборов (биноклей, зрительных труб, телескопических и коллиматорных прицелов) все чаще стали возникать вопросы, связанные с качеством изображения, даваемого такими приборами, а также о факторах, влияющих на точность прицеливания.

Начнем с понятия аберрации . Любой реальный оптико-механический прибор является произведенной человеком из каких-то материалов ухудшенной версией идеального прибора, модель которого рассчитывается исходя из простых законов геометрической оптики. Так в идеальном приборе каждой точке рассматриваемого предмета соответствует определенная точка изображения. На самом же деле это не так. Точка никогда не изображается точкой. Ошибки или погрешности изображений в оптической системе, вызываемые отклонениями луча от того направления, по которому он должен был бы идти в идеальной оптической системе, называются аберрациями. Аберрации бывают разные. Наиболее распространены следующие виды аберраций оптических систем: сферическая аберрация, кома, астигматизм и дисторсия . К аберрациям также относятся кривизна поля изображения и хроматическая аберрация (связана с зависимостью показателя преломления оптической среды от длины волны света).

Сферическая аберрация - проявляется в несовпадении главных фокусов для лучей света, прошедших через осесимметричную систему (линзу, объектив и т.д.) на разных расстояниях от оптической оси системы. Вследствие сферической аберрации изображение светящейся точки имеет вид не точки, а окружности с ярким ядром и ослабевающим к периферии ореолом. Исправление сферической аберрации осуществляется подбором определенного сочетания положительных и отрицательных линз, обладающих одинаковыми аберрациями, но с разными знаками. Исправить сферическую аберрацию можно в одиночной линзе используя асферические преломляющие поверхности (вместо сферы, например, поверхность параболоида вращения или что-то подобное).

Кома. Кривизна поверхности оптических систем кроме сферической аберрации вызывает также и другую погрешность - кому. Лучи, идущие от точки объекта, лежащей вне оптической оси системы, образуют в плоскости изображения в двух взаимно перпендикулярных направлениях сложное несимметричное пятно рассеяния, напоминающее по виду запятую (comma, англ. - запятая). В сложных оптических системах кому исправляют совместно со сферической аберрацией подбором линз.

Астигматизм заключается в том, что сферическая поверхность световой волны при прохождении оптической системы может деформироваться, и тогда изображение точки, не лежащей на главной оптической оси системы, представляет собой уже не точку, а две взаимно перпендикулярные линии, расположенные на разных плоскостях на некотором расстоянии друг от друга. Изображения точки в промежуточных между этими плоскостями сечениях имеют вид эллипсов, одно из них имеет форму круга. Астигматизм обусловлен неодинаковостью кривизны оптической поверхности в разных плоскостях сечения падающего на нее светового пучка. Астигматизм может быть исправлен таким подбором линз, чтобы одна компенсировала астигматизм другой. Астигматизмом (впрочем, как любыми другими аберрациями) может обладать и человеческий глаз.

Дисторсия - это аберрация, которая проявляется в нарушении геометрического подобия между предметом и изображением. Она обусловлена неодинаковостью линейного оптического увеличения на разных участках изображения. Положительная дисторсия (увеличение в центе меньше чем по краям) носит название подушкообразной. Отрицательная - бочкообразной.
Кривизна поля изображения заключается в том, что изображение плоского предмета получается резким не в плоскости, а на искривленной поверхности. Если линзы, входящие в состав системы, можно считать тонкими, и система исправлена на астигматизм, то изображение плоскости, перпендикулярной оптической оси системы представляет собой сферу радиуса R, причем 1/R=, где fi- фокусное расстояние i-ой линзы, ni - показатель преломления ее материала. В сложной оптической системе кривизну поля исправляют, сочетая линзы с поверхностями разной кривизны так, чтобы величина 1/R равнялась нулю. Хроматическая аберрация обусловлена зависимостью показателя преломления прозрачных сред от длины волны света (дисперсия света). Вследствие ее проявления изображение предмета, освещенного белым светом, становится окрашенным. Для уменьшения хроматической аберрации в оптических системах применяют детали с различной дисперсией, что приводит к взаимной компенсации этой аберрации…"(с)1987, А.М. Морозов, И.В. Кононов, "Оптические приборы", М., ВШ, 1987

Много вопросов возникает в охотничьих кругах по поводу этого слова. Начинающие охотники, дождавшиеся "розовой" , покупают нарезной карабин и вдогонку оптику к нему, но не все разбираются в техническом плане, как устанавливать оптический прицел, как пристреливать, да и даже как правильно выбрать оптический прицел, что уж говорить о сложных понятиях самого прицела и как с ним работать. После определённого времени, опыта и "шишек" на голову, начинающий охотник или стрелок становится специалистом или профессионалом. Но впопыхах, или на радостях, покупают оптический прицел, а потом с разочарованием хотят вернуть его обратно, из-за отсутствия информации или недостаточной консультации в этом узком вопросе...

У меня прицел плохой, в нём расфокус, плохое изображение, чётко ничего не видно, и т.д....услышав или прочитав отрывки информации про то, что нужен прицел с ОТСТРОЙКОЙ параллакса, что он очень ему необходим или что он лучше всего. Попробуем немного раскрыть эту тему, в очередной раз.

Обратимся к сети: ПАРАЛЛАКС или ОШИБКА ПАРАЛЛАКСА.

Википедия нам коротко говорит что такое параллакс и виды параллакса.
Паралла́кс (греч. παραλλάξ, от παραλλαγή, «смена, чередование») - изменение видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя.
Виды параллаксов: Временной - Суточный, Годичный, Вековой, параллакс в Фотографии (Видеоискателя), Стереоскопический и параллакс Дальномера. К НАШЕЙ теме относится параллакс видеоскателя (прицел) - это не высота оси прицела над осью ствола, а погрешность расстояния между стрелком и целью.

Что пишут на сторонних сайтах, близких к нашей тематике?

Параллакс - это видимое движения цели относительно сетки при движении головой вверх и вниз, когда вы глядите в окуляр прицела. Это происходит, когда цель не попадает на той же плоскости, что и сетка. Для устранения параллакса, некоторые прицелы имеют регулируемый объектив или колесо сбоку. Стрелок регулирует передний или боковой механизм, смотря одновременно и на сетку и на цель. Когда и сетка и мишень в резком фокусе, в прицеле, на его максимальном увеличении, прицел, как говорят, свободен от параллакса.

Параллаксом называют видимый сдвиг изображения цели по отношению к изображению прицельной марки, если глаз отодвигается в сторону от центра окуляра. Это происходит вследствие того, что изображение цели сфокусировано не совсем в фокальной плоскости прицельной марки.

Параллаксом называется кажущееся смещение наблюдаемого предмета вследствие перемещения глаза стрелка в какую-либо сторону; появляется оно в результате изменения угла, под которым был виден данный предмет до перемещения глаза стрелка. В результате кажущегося смещения прицельной шпильки или перекрестья получается ошибка в наводке, эта параллактическая ошибка и есть так называемый параллакс.

Из этого всего ясно, что параллакс оптического прицела - это величина связанная с фокусировкой прицела. Проще говоря, когда ВЫ смотрите в оптический прицел, который нацелен на какой-то объект, и при смещении головы (оси глаза), перекрестие отклоняется от точки прицеливания, перемещается по мишени. Ещё можно сказать, что параллакс прицела - это внутренняя фокусировка прицела на каком-то объекте, на определённом расстоянии .

С эффектом параллакса сталкивался каждый, кто хоть раз фотографировал . Когда вы фотографируете, к примеру, друзей на фоне какого-нибудь объекта (памятника), который находится на приличном расстоянии от вас и друзей, а фотоаппарат фокусируется то на друзьях, то на памятнике...то у вас получается фотография, либо с друзьями в фокусе и размытым памятником, либо с памятником в фокусе, но с размытыми друзьями, особенно если у вас объектив на фотоаппарате с большой глубиной резкости. Принцип фокусировки объектива фотоаппарата основан на фокусировки человеческого зрачка. При фотографировании у вас получается две плоскости друзья и памятник, если немного сместиться или покачаться из стороны в сторону, то плоскости будут смещаться относительно друг друга и вас. Если друзья подойду близко к памятнику (станут в одной плоскости), то и фокус будет один, т.е. если переместиться (сменить позицию), то фокус не изменится и "РАСФОКУСА" не будет, и фотография будет чёткой со всеми участниками.



Так и в прицеле у вас так же две плоскости, плоскость с перекрестием, и плоскость с мишенью, а в роли фотоаппарата ваш зрачок, если сфокусироваться на мишени, то перекрестие будет не чёткое, если сфокусироваться на перекрестии, то мишень будет замылина, как будто не сфокусирована. Необходимо добиться того, чтоб перекрестие и цель были в чётком фокусе, а при смещении вашего зрачка, плоскости мишени и перекрестия не смещались относительно друг друга, т.е. перекрестие не двигалось по мишени.


Для начала нужно рассказать о прицелах. Прицелы делятся на два типа, с отстройкой параллакса и без отстройки.

Прицелы без отстройки параллакса имеют внутреннюю фокусировку объектива на дистанцию около 100 метров (90-150м), или как говорят с фиксированным параллаксом на 100 ярдом или метров. В таких прицелах плоскость мишени идеальна сфокусирована на расстоянии 100 метров от стрелка, и при кивании головы перекрестие находится неподвижно. Если мишень переместить на дистанцию 40 метров, или 300-400 метров, то вы так же будете видеть сетку в фокусе, а мишень немного размытой, и при кивании головой перекрестие будет немного смещаться.


В основном отстройки параллакса нет в прицелах для стрельбы на малых и средних дистанциях, где стрельба подразумевается на расстояния до 600-800 метров. В охотничьих прицелах, для стандартных охот...стрельбы на дистанциях до 300-500 метров уже считается приличной, и отстройка параллакса не нужна вовсе. Почему? Потому что погрешность отклонения пули при максимальной ошибке параллакса на таких дистанциях измеряется в миллиметрах, точнее 20-40 мм отклонение пули от точки прицеливания. Объекты современной охоты, гораздо крупнее по размерам, и даже с максимальной погрешностью параллакса, вы попадёте в убойную зону любого зверя на дистанции в 400-500 метров. Единственный дискомфорт может быть в восприятии цели, чем дальше находится объект стрельбы, тем хуже чёткость, даже при максимальном оптическом увеличении.

Прицелы с отстройкой параллакса имеют дополнительный барабан на узле управления или кольцо на объективе. Такой барабанчик (барабан отстройки параллакса) обычно находится с левой стороны узла настроек прицела, но бывает и сверху, называется он (SF - Side Focusing- боковая фокусировка). На него устанавливаются дополнительные аксессуары, для точной настройки фокусировки, в виде колец разного диаметра.


Отстройка параллакса может находится на объективе прицела, в виде широкого кольца, называется такое кольцо (AO - Adjustable Objective- регулируемая цель или регулируемый объектив), но иногда аббревиатурой (AO) называют просто наличие настройки внутренней фокусировки объектива.
Прицелы с отстройкой параллакса предназначены для стрельбы на дальних и сверхдальних дистанциях, когда на точность выстрела влияет каждый миллиметр отстройки параллакса, поправки на ветер, атмосферное давление, температура окружающей среды, высота над уровнем моря и многое другое. Стрельба на такие дистанции скорее спортивная, чем охотничья, ну или снайперская прерогатива. Бывают конечно и охотничьи прицелы, с отстройкой параллакса, особенно для охот на равнинах или в горах, когда охота без мощной оптики (бинокля, трубы, дальномера, прицела) немыслима, а к точному выстрелу порой готовишься не один час.

На объективе (АО)

На объективе (АО)

На узле настроек (SF)

На узле настроек (SF)


В недорогих коллиматорных прицелах параллакс фиксированный на 40-50 метров , так как прицельная стрельба при помощи этих прицелов, ведётся на ограниченном расстоянии до 100 метров. Если взять коллиматорные прицелы для нарезного оружия, то эффект параллакса как правило отсутствует или сведён к минимальной погрешности (Aimpoint и EOTech), и стрелять прицельно можно дистанции свыше 100 метров.

Параллакс в коллиматорных прицелах , так же присутствует, но эта тема более спокойная, в отличие от оптических прицелов. Отстройки параллакса в коллиматорах нет, он или отсутствует или фиксированный, всё зависит от бренда. Тут вопрос функционала выходит на передний план, для чего ВАМ нужен коллиматорный прицел? Для пистолета, дробовика, или для нарезного карабина.