Сила Ампера действует и на рельсы, приводя их к взаимному отталкиванию.

История

Термин рельсотрон был предложен в конце 1950-х годов советским академиком Львом Арцимовичем для замены существовавшего громоздкого названия «электродинамический ускоритель массы» . Причиной разработки подобных устройств, являющихся перспективным оружием , стало то, что, по оценкам экспертов, использование порохов для стрельб достигло своего предела - скорость выпущенного с их помощью заряда ограничена 2,5 км/сек .

В 1970-х годах рельсотрон был спроектирован и построен Джоном П. Барбером из Канады и его научным руководителем Ричардом А. Маршаллом из Новой Зеландии в Исследовательской школе физических наук Австралийского национального университета . [ ]

Теория

В физике рельсотрона модуль вектора силы может быть вычислен через закон Био - Савара - Лапласа и формулу силы Ампера . Для вычисления потребуются:

Из закона Био - Савара - Лапласа следует, что магнитное поле на определённой дистанции ( s {\displaystyle s} ) от бесконечного провода с током вычисляется как:

B (s) = μ 0 I 2 π s {\displaystyle \mathbf {B} (s)={\frac {\mu _{0}I}{2\pi s}}}

Следовательно, в пространстве между двумя бесконечными проводами, расположенными на расстоянии r {\displaystyle r} друг от друга, модуль магнитного поля может быть выражен формулой:

B (s) = μ 0 I 2 π (1 s + 1 r − s) {\displaystyle B(s)={\frac {\mu _{0}I}{2\pi }}\left({\frac {1}{s}}+{\frac {1}{r-s}}\right)}

Для того, чтобы уточнить среднее значение для магнитного поля на арматуре рельсотрона, предположим, что диаметр рельса d {\displaystyle d} намного меньше расстояния r {\displaystyle r} и, считая, что рельсы могут считаться парой полубесконечных проводников, мы можем вычислить следующий интеграл:

B avg = 1 r ∫ d r − d B (s) d s = μ 0 I 2 π r ∫ d r − d (1 s + 1 r − s) d s = μ 0 I π r ln ⁡ r − d d ≈ μ 0 I π r ln ⁡ r d {\displaystyle B_{\text{avg}}={\frac {1}{r}}\int _{d}^{r-d}B(s){\text{d}}s={\frac {\mu _{0}I}{2\pi r}}\int _{d}^{r-d}\left({\frac {1}{s}}+{\frac {1}{r-s}}\right){\text{d}}s={\frac {\mu _{0}I}{\pi r}}\ln {\frac {r-d}{d}}\approx {\frac {\mu _{0}I}{\pi r}}\ln {\frac {r}{d}}}

По закону Ампера, магнитная сила на проводе с током равна I d B {\displaystyle IdB} ; предполагая ширину снаряда-проводника r {\displaystyle r} , мы получим:

F = I r B avg = μ 0 I 2 π ln ⁡ r d {\displaystyle F=IrB_{\text{avg}}={\frac {\mu _{0}I^{2}}{\pi }}\ln {\frac {r}{d}}}

Формула основывается на допущении, что расстояние l {\displaystyle l} между точкой, в которой измеряется сила F {\displaystyle F} , и началом рельсов больше, чем расстояние между рельсами ( r {\displaystyle r} ) в 3-4 раза ( l > 3 r {\displaystyle l>3r} ). Также были сделаны некоторые другие допущения; чтобы описать силу более точно, требуется учитывать геометрию рельсов и снаряда.

Конструкция

С изготовлением рельсотрона связан ряд серьёзных проблем: импульс тока должен быть настолько мощным и резким, чтобы снаряд не успел испариться и разлететься, но возникла бы ускоряющая сила , разгоняющая его вперёд. На снаряд или плазму действует сила Ампера, поэтому сила тока важна для достижения необходимой индукции магнитного поля, и важен ток, протекающий через снаряд перпендикулярно силовым линиям индукции магнитного поля. При протекании тока через снаряд материал снаряда (часто используется ионизированный газ сзади лёгкого полимерного снаряда) и рельсы должны обладать:

  • как можно более высокой проводимостью ,
  • снаряд - как можно меньшей массой ,
  • - как можно большей мощностью и меньшей индуктивностью .

Однако особенность рельсового ускорителя в том, что он способен разгонять сверхмалые массы до сверхбольших скоростей (скорость снаряда в огнестрельном оружии ограничивается кинетикой проходящей в оружии химической реакции). На практике рельсы изготавливают из бескислородной меди , покрытой серебром , в качестве снарядов используют алюминиевые брусочки или проволоку, может использоваться полимер в сочетании с проводящей средой, в качестве источника питания - батарею высоковольтных электрических конденсаторов , которая заряжается от ударных униполярных генераторов , компульсаторов, и прочих источников электрического питания с высоким рабочим напряжением, а самому снаряду перед вхождением на рельсы стараются придать как можно большую начальную скорость, используя для этого пневматические или огнестрельные пушки . В тех рельсотронах, где снарядом является проводящая среда, после подачи напряжения на рельсы снаряд разогревается и сгорает, превращаясь в токопроводную плазму , которая далее также разгоняется. Таким образом, рельсотрон может стрелять плазмой, однако вследствие её неустойчивости она быстро дезинтегрируется . При этом необходимо учитывать, что движение плазмы, точнее, движение разряда (катодные, анодные пятна), под действием силы Ампера возможно только в воздушной или иной газовой среде не ниже определённого давления, так как в противном случае, например, в вакууме, плазменная перемычка рельсов движется в направлении, обратном силе - так называемое обратное движение дуги.

При использовании в рельсотронных пушках непроводящих снарядов снаряд помещается между рельсами, сзади снаряда тем или иным способом между рельсами зажигается дуговой разряд , и тело начинает ускоряться вдоль рельсов. Механизм ускорения в этом случае отличается от вышеизложенного: сила Ампера прижимает разряд к задней части тела, которая, интенсивно испаряясь, образует реактивную струю , под действием которой и происходит основное ускорение тела .

Преимущества и недостатки

  • Использование рельсотрона исключает необходимость хранить на кораблях боезапас обычных снарядов, что повышает живучесть корабля .
  • Сравнительно небольшие размеры снарядов для рельсотрона позволяют увеличить боезапас . Однако размер системы в целом при том весьма не мал, и как минимум занимает места не меньше, чем несколько ПКР средних размеров.
  • Дальность эффективного огня рельсотрона - до 200 км , однако на это можно возразить, что наибольшей эффективной дальностью для артиллерии является 20-40 км, а на большей дистанции приходится или использовать корректируемый в полёте снаряд, или же многократно возрастёт расход боеприпасов.
  • Высокая скорость снаряда позволяет использовать рельсотрон в качестве средства ПВО . Скорость снаряда перспективной пушки, испытания которой планировались на 2016 год , должна была составить 6 , что существенно ниже многих зенитных ракет (9 М для одной из ракет С-300 В4) , маневрирование снаряда невозможно; на практике удалось достичь лишь скорости 3,6 М .
  • Никаких доказательств эффективности не предъявлено за много лет , особенно в смысле точности и разрушительной силы. Более того, при сверхдальней стрельбе возникает проблема неоднородной кривизны Земли, гравитационные неравномерности, перепад температур и соответственно плотности воздуха, как и влажности и многие другие проблемы, ограничивающие точную стрельбу артиллерии некорректируемыми снарядами дальностью в считанные десятки км.
  • Пробиваемость , в частности (на больших дальностях), и воздействие в целом при попадании не превышает показатели артиллерии средних калибров (скорость в несколько раз больше, но масса в несколько раз меньше, взрывчатого вещества вместо многих килограмм - ноль, единственная разница - в росте дальности из-за сочетания массы, скорости и, в первую очередь, сократившихся размеров, что снижает аэродинамическое сопротивление). Кинетическая энергия снаряда при пробитии не передаётся сверх необходимого для преодоления преграды именно в силу высокой скорости снаряда. Т.е. если снаряд имеет энергию 3 единицы, а чтобы пробить мишень, хватает 1 единицы, то снаряд пробивает дырку и с оставшейся энергией движется дальше. У него нет заряда, поэтому всё воздействие на цель ограничивается пробитием в ней дырки. Правда, при очень высоких скоростях тут есть нюансы, но по поражающему действию они несравнимы со взрывчаткой. [прояснить ] [ ]
Преимущества
  • При условии решения всех задач, связанных с реальным применением, такие орудия могут обеспечивать тактическую стационарную ПРО против никак не маневрирующих баллистических ракет , либо расширить горизонт дальности стрельбы.

Программа ВМС США

Разработки в России

По данным первого зампреда комитета Совета Федерации по обороне и безопасности Франца Клинцевича , работа по созданию электромагнитной пушки (рельсотрона) активно ведётся и в России . Предполагается его использование в космонавтике для вывода на орбиту полезных грузов, но кроме этих слов никаких достоверных фактов пока не было.

Современные артиллерийские пушки представляют собой сплав новейших технологий, ювелирной точности поражения и возросшей мощности боеприпасов. И все же, несмотря на колоссальный прогресс, пушки XXI века стреляют также, как и их прабабушки — используя энергию пороховых газов.

Поколебать монополию пороха смогло электричество. Идея создания электромагнитной пушки зародилась практически одновременно в России и Франции в разгар Первой мировой войны. В ее основу легли труды немецкого исследователя Йоганна Карла Фридриха Гаусса, который разработал теорию электромагнетизма, воплотившуюся в необычное устройство — электромагнитную пушку.

Опережая время

Идея создания электромагнитной пушки намного опередила свое время. Тогда в начале минувшего века все ограничилось опытными образцами, показавшими к тому же очень скромные результаты. Так французская модель едва сумела разогнать 50 граммовый снаряд до скорости 200 м/сек, что ни шло ни в какое сравнение с действующими на тот момент обычными артиллерийскими системами. Ее российский аналог – магнитно-фугальная пушка и вовсе осталась в чертежах. И все же главный итог – воплощение идеи в реальное «железо», а подлинный успех был вопросом времени.

Гаусс-пушка

Разработанная немецким ученым пушка Гаусса представляет собой разновидность электромагнитного ускорителя масс. Пушка состоит из соленоида (катушки) с расположенным внутри него стволом из диэлектрического материала. Она заряжается снарядом из ферромагнетика. Чтобы заставить снаряд двигаться, на катушку подается электрический ток, создающий магнитное поле, благодаря которому снаряд втягивается в соленоид. Скорость снаряда тем быстрее, чем мощнее и короче генерированный импульс.

Принцип действия Гаусс-пушки

Преимущества электромагнитной пушки Гаусса по сравнению с другими видами оружия — возможность гибко варьировать начальную скорость и энергию снаряда, а также бесшумность выстрела. Есть и недостаток — низкий КПД, составляющий не более 27 % и связанные с этим крупные затраты энергии. Поэтому в наше время пушка Гаусса имеет перспективы скорее в качестве любительской установки. Однако, идея может получить вторую жизнь в случае изобретения новых компактных и сверхмощных источников тока.

Рельсовая электромагнитная пушка

Рельсотрон – еще один вид электромагнитной пушки. В состав рельсотрона входят источник питания, коммутационная аппаратура и два электропроводящих рельса от 1 до 5 метров, которые одновременно являются электродами, расположенными друг от друга на расстоянии 1 см. В нем энергия электромагнитного поля взаимодействует с энергией плазмы, которая образуется в результате сгорания специальной вставки в момент подачи высокого напряжения.

Принцип действия рельсотрона

Порох на большее не способен

Конечно, рано говорить о том, что время традиционных боеприпасов безвозвратно ушло в прошлое. Однако по оценкам экспертов они достигли своего предела. Скорость выпущенного с их помощью заряда ограничена 2,5 км/сек. Для войн будущего этого явно недостаточно.

Рельсовые пушки – больше не фантазия

В США полным ходом идут лабораторные испытания 475-мм рельсотрона, разработанного компаниями General Atomics и BAE Systems. Первые залпы чудо-оружия показали обнадеживающие результаты. 23-кг снаряд вылетал из ствола со скоростью, превышающей 2200 м/сек, что позволит в дальнейшем поражать цели на расстоянии до 160 км. Невероятная кинетическая энергия поражающих элементов электромагнитных орудий делает ненужными метательные заряды, а значит повышается живучесть расчетов. После доводки опытного образца рельсотрон установят на скоростной корабль JHSV Millinocket. Примерно через 5-8 лет US NAVY начнут планомерно оснащаться рельсовыми пушками.

Наш ответ

В нашей стране об электромагнитных пушках вспомнили в 50-е годы, когда началась безумная гонка по созданию очередного сверхоружия. До сих пор эти работы строго засекречены. Советским проектом руководил выдающийся физик академик Л. А. Арцимович, многие годы занимавшийся проблемами плазмы. Именно он заменил громоздкое название «электродинамический ускоритель массы» на всем известное сегодня — «рельсотрон».

В России и сейчас ведутся подобные разработки. Свое видение рельсотрона недавно продемонстрировал коллектив одного из филиалов Объединенного института высоких температур РАН. Для разгона заряда был разработан электромагнитный ускоритель. Пулю весом в несколько грамм здесь удалось разогнать до скорости около 6,3 км/сек.

Пушка Гаусса (англ. Gauss gun , Gauss cannon ) — одна из разновидностей электромагнитного ускорителя масс. Названа по имени учёного Гаусса, исследовавшего физические принципы электромагнетизма, на которых основано данное устройство.
Принцип действия
Пушка Гаусса состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд (сделанный из ферромагнетика). При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. Снаряд при этом получает на концах полюса симметрично полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, т.е. тормозится. Но если в момент прохождения снаряда через середину соленоида отключить в нём ток, то магнитное поле исчезнет, и снаряд вылетит из другого конца ствола. Но при выключении источника питания в катушке образуется ток самоиндукции, который имеет обратное направление тока, и поэтому меняет полярность катушки. А это значит, что при резком выключении источника питания снаряд, пролетевший центр катушки, будет отталкиваться и получать ускорение дальше. В ином случае, если снаряд не достиг центра, он будет тормозиться.

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы. Если используется полярный конденсатор (напр. на электролите), то в цепи обязательно должны быть диоды, которые защитят конденсатор от тока самоиндукции и взрыва.

Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к середине обмотки ток в последней уже успевал бы уменьшится до минимального значения, то есть заряд конденсаторов был бы уже полностью израсходован. В таком случае КПД одноступенчатой пушки Гаусса будет максимальным.

Расчёты
Энергия запасаемая в конденсаторе
V - напряжение конденсатора (в Вольтах)
C - ёмкость конденсатора (в Фарадах)

Энергия запасаемая при последовательном и параллельном соединении конденсаторов равна.

Кинетическая энергия снаряда

m - масса снаряда (в килограммах)
u - его скорость (в м/с)
Время разряда конденсаторов
Это время за которое конденсатор полностью разряжается. Оно равно четверти периода:

L - индуктивность (в Генри)
C - ёмкость (в Фарадах)
Время работы катушки индуктивности
Это время за которое ЭДС катушки индуктивности возрастает до максимального значения (полный разряд конденсатора) и полностью падает до 0. Оно равно верхнему полупериоду синусоиды.

L - индуктивность (в Генри)
C - ёмкость (в Фарадах)
Преимущества и недостатки
Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз и неограниченность в выборе начальной скорости и энергии боеприпаса, а так же скорострельности орудия, возможность бесшумного выстрела (если скорость снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, больша́я надежность и износостойкость, а так же возможность работы в любых условиях, в том числе космического пространства.

Однако, несмотря на кажущуюся простоту пушки Гаусса и её преимущества, использование её в качестве оружия сопряжено с серьёзными трудностями.

Первая трудность — низкий КПД установки. Лишь 1-7 % заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает даже 27 %. Поэтому пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию.

Вторая трудность — большой расход энергии (из-за низкого КПД) и достаточно длительное время перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания (как правило, мощную аккумуляторную батарею). Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что значительно уменьшит мобильность пушки Гаусса.

Третья трудность (следует из первых двух) — большой вес и габариты установки, при её низкой эффективности.

Таким образом, на сегодняшний день пушка Гаусса не имеет особых перспектив в качестве оружия, так как значительно уступает другим видам стрелкового оружия. Перспективы возможны лишь в будущем, если будут созданы компактные, но мощные источники электрического тока и высокотемпературные сверхпроводники (200—300К).

RailGun

Рельсовая пушка (англ. Railgun ) — форма оружия, основанная на превращении электрической энергии в кинетическую энергию снаряда. Другие названия: рельсовый ускоритель масс, рельсотрон, рейлган (Railgun). Не путать с пушкой Гаусса.
Принцип действия
Рельсовая пушка использует электромагнитную силу, называемую силой Ампера, чтобы разогнать электропроводный снаряд, который изначально является частью цепи. Иногда используется подвижная арматура, соединяющая рельсы. Ток I , идущий через рельсы, возбуждает магнитное поле B между ними, перпендикулярно току, проходящему через снаряд и смежный рельс. В результате происходит взаимное отталкивание рельсов и ускорение снаряда под действием силы F .
Преимущества и недостатки
С изготовлением рельсотрона связан ряд серьёзных проблем: импульс тока должен быть настолько мощным и резким, чтобы снаряд не успел бы испариться и разлететься, но возникла бы ускоряющая сила, разгоняющая его вперед. Поэтому материал снаряда и рельс должен обладать как можно более высокой проводимостью, снаряд как можно меньшей массой, а источник тока как можно большей мощностью и меньшей индуктивностью. Однако особенность рельсового ускорителя в том, что он способен разгонять сверхмалые массы до сверхбольших скоростей. На практике рельсы изготавливают из бескислородной меди, покрытой серебром, в качестве снарядов используют алюминиевые брусочки или проволоку, в качестве источника питания — батарею высоковольтных электрических конденсаторов, генераторы Маркса, ударные униполярные генераторы, компульсаторы, а самому снаряду перед вхождением на рельсы стараются придать как можно большую начальную скорость, используя для этого пневматические или огнестрельные пушки. В тех рельсотронах, где снарядом является проволока, после подачи напряжения на рельсы проволока разогревается и сгорает, превращаясь в токопроводную плазму, которая далее также разгоняется. Таким образом рельсотрон может стрелять плазмой, однако вследствие её неустойчивости она быстро дезинтегрируется.

Американская компания «General Atomics Electromagnetic Systems (GA-EMS)» сообщила на своем сайте об успешных испытаниях пушки-рельсотрона. Тестовые стрельбы производились на наземном полигоне «Dugway» в штате Юта.

Рельсотрон (английское название - railgun), или рельсовый ускоритель масс «Blitzer» с дульной энергией (muzzle velocitie) около трех мегаджоулей выпустил на полигоне пять снарядов класса «guidance electronics unit» (GEU) с высоким начальным ускорением. Сообщается, что снаряды и их критические компоненты показали стабильную и устойчивую «работу» как в электромагнитной среде внутри рельсотрона, так и в полёте.

стати, само словечко «рельсотрон» придумал знаменитый советский физик академик Л.Арцимович.

General Atomics — компания США, занимающаяся проектами в области ядерных технологий и оборонными заказами. Расположена в Сан-Диего, Калифорния. General Atomics разрабатывает широкий спектр систем: от частей цикла ядерного топлива до БПЛА, авиационных сенсоров, современной электроники и лазерных технологий.

Группа электромагнитных систем (EMS, Electromagnetic Systems Group), занимается поставками для оборонных, энергетических и коммерческих применений. В частности, производит линейные двигатели, сверхпроводящие и обычные электродвигатели, инверторы, оборудование для высоковольтных систем и другие приборы конвертации, запасания и передачи энергии. Также EMS разрабатывает электромагнитные системы запуска и торможения летательных аппаратов (EMALS и AAG), электромагнитные пушки (рельсотрон «Blitzer» для ВМФ США и армии, и транспортные системы Maglev.

Компания разработала и успешно испытала два рельсотрона: один, мощностью в 3 МДж по своей инициативе, и второй, мощностью 33 МДж - по заказу Пентагона. Разработан и построен также источник электромагнитных импульсов для обоих орудий и разрабатывается снаряд для противовоздушной и противоракетной обороны и для высокоточной стрельбы.

Рельсотрон — импульсный электродный ускоритель масс, принцип действия которого объясняется с помощью силы Лоренца, направленной на расширение (расталкивание) замкнутого проводника с током и превращающей электрическую энергию в кинетическую энергию. Является перспективным оружием.

Рельсотрон состоит из двух параллельных электродов, называемых рельсами, подключенных к источнику мощного постоянного тока. Разгоняемая электропроводная масса располагается между рельсами, замыкая электрическую цепь, и приобретает ускорение вследствие силы Лоренца, действующей на замкнутый проводник с током в его собственном магнитном поле. Сила Лоренца действует и на рельсы, приводя их к взаимному отталкиванию. Иногда используется подвижная арматура, соединяющая рельсы.

Стоимость выстрела рельсотрона существенно ниже таковой для аналогичной по дальности ракеты корабельного базирования: $25 тыс. долл. США против $1 млн.

Рельсотрон теоретически имеет несомненные преимущества как перед обычными пушками, так и перед ракетами. Рельсотрон разгоняет снаряды до такой громадной скорости, что не нужен даже пороховой заряд. Дульная скорость рельсотронного снаряда массой не свыше 100 граммов может быть 6-10 километров в секунду, Напомним, что это почти вторая космическая скорость (11.2км/с.), что делает траекторию снаряда настильной на очень большом расстоянии. Уже существующие рельсотроны могут стрелять на расстояние до 180 километров, а в перспективе планируется дальность 400 километров.

На таком расстоянии сейчас можно стрелять только ракетами, которые стоят миллионы долларов, кроме того их научились перехватывать.

А трехкилограммовая стальная болванка, летящая со скоростью в семь раз быстрее звука, может потопить крупный корабль за счет своей кинетической энергии. Конечно, попасть с расстояния не то что в несколько сот, даже в несколько десятков километров в движущийся объект непросто.

Простой пример:

Если дистанция стрельбы 180 км, а средняя скорость снаряда 2,5 км/с, то подлетное время составит 72 с. То есть снаряд, выпущенный из «рельсы» с дульной скоростью в 7км/с, долетит до цели через минуту с небольшим.
Скорость атомного ракетного крейсера «Петр Великий» 32 узла или чуть больше 16м/с.
Таким образом за время полета снаряда корабль пройдет 1152 метра на полной ходу или 576 метра на крейсерской скорости. С учетом того, что длина крейсера 262 метра, а снаряд неуправляемый, то стальная болванка промахнется на несколько сот метров.

Никакой взрывчатки. Так вылетает из электромагнитной рельсовой пушки снаряд, разогнанный в считанные мгновения с нуля до 2,5 километров в секунду (фото с сайта navy.mil).


Какова кинетическая энергия большого самосвала, с горкой гружёного песком и разогнанного до 100 километров в час? Такова была энергия снаряда, выпущенного вчера из электромагнитной пушки ВМС США. И ведь тест проходил лишь на трети её полной силы.

31 января 2008 года в исследовательской лаборатории ВМС США (Naval Surface Warfare Center), расположенной в Далгрене (Dahlgren), успешно проведены испытания самой мощной в мире электромагнитной пушки (Electromagnetic Railgun - EMRG) на рекордном (для "рейлганов") уровне энергии выстрела в 10,64 мегаджоуля.


Джим Пойнор (Jim Poynor), инженер Naval Surface Warfare Center, инспектирует самый мощный в мире "рейлган" (фото John F. Williams/U.S. Navy).


Заметим, два с половиной километра в секунду, это не самая большая скорость, достигнутая в опытах с "рейлганами". Так, на схожей (по устройству, но не по размеру) пушке в университете Канберры (University of Canberra) учёные разгоняли снаряд до 5,9 километров в секунду. Вот только весил он всего 16 граммов – несравнимо меньше, чем снаряд в американской установке (свыше 3 килограммов).

Это ещё далеко не боевая система, но хорошее к ней приближение.

Когда инженеры и учёные закончат проект аналогичной корабельной установки, она должна будет выбрасывать снаряд, используя энергию уже в 64 мегаджоуля.


По некоторым данным, скорость вылета снаряда корабельной рельсовой установки может достигать почти 6 километров в секунду. Причём вес "ядра", принятого для такой морской пушки, может быть, к примеру, выше, чем вес болванки, разгоняемой в тестовой установке. Но он же будет значительно ниже, чем вес снарядов для современных корабельных орудий главного калибра.

Это, по мнению разработчиков комплекса, позволит эсминцам и линкорам брать с собой больший боезапас (считая не по весу, а по числу выстрелов).

В любом случае, цель военных - получить электромагнитное рельсовое орудие, способное уничтожать морские и наземные цели на большом расстоянии. По плану специалистов ВМС США (US Navy), скорость его снаряда в момент соударения с объектом (при полёте в атмосфере тело, конечно, тормозится) должна составлять не менее 5 махов или 1,7 километра в секунду!

Достаточно большая величина, чтобы массивный и прочный "молоток", и без всякой взрывчатки, пробил в цели здоровенную дыру, разрушил объект, пронзив при этом толстый лист стали или бетонную стену, или даже проник в не слишком глубокий подземный бункер. Разумеется, такой снаряд можно ещё и взрывчаткой начинить.

Скорострельность корабельной установки EMRG должна составить от 6 до 12 выстрелов в минуту.


Схема "рейлгана". Показан дизель-генератор, который в течение некоторого времени заряжает колоссальный набор конденсаторов (серый квадрат). Последние в момент выстрела подают напряжение на два параллельных рельса суперпушки (иллюстрация с сайта military.com).


Как устроен "рейлган"? Его ствол оборудован двумя параллельными металлическим пластинами, на которые при выстреле подают электрический ток в миллионы ампер.

Этот ток создаёт вокруг рельсов магнитное поле. Снаряд движется между рельсами, причём позади него размещена специальная вставка, которая как раз и замыкает цепь между двумя пластинами. В этой вставке ток также наводит сильное магнитное поле, которое взаимодействует с полем вокруг рельсов, разгоняя "арматуру" и, следовательно, снаряд.

DefenseTech пишет, что дальнобойность электромагнитных орудий для перспективный кораблей США должна составить 250 морских миль (463 километра), а по заданию военных она должна составлять "по меньшей мере 200 миль" (370 километров), что в разы больше, чем у традиционных пороховых орудий.


DD(X) должен быть оснащён разным оружием, в частности, крылатыми ракетами с вертикальным стартом (из шахты). Запуск одной из них и показан на рисунке (иллюстрация с сайта ddxnationalteam.com).


Такую же и куда большую дальность могут обеспечить крылатые ракеты, но у них ниже скорость полёта, а значит – больше времени от принятия решения до уничтожения цели. Так что электромагнитная пушка может дать кораблю определённое преимущество перед противником.

Согласно Military.com, "рейлган" может получить эсминец XXI века DD(X), разрабатываемый совместно компаниями Northrop Grumman, Raytheon, Lockheed Martin, General Dynamics и BAE Systems.

По информации Naval Surface Warfare Center, ВМС США, возможно, получат на вооружение корабли с EMRG в 2020-2025 годах.


В фантастическом фильме "Стиратель" (Eraser) электромагнитную пушку можно было поднять на руках, и даже удержать две таких. А вот инженеры крупных компаний чаще "помещали" такое оружие в "танки будущего", понимая, сколько оно на самом деле может весить. В конце концов, специалисты пришли к выводу, что наибольшего толка от "рейлганов" можно добиться только в очень большом масштабе, а потому им прямая дорога на борт кораблей (кадр с сайта trailerfan.com и иллюстрация Lockheed Martin с сайта military.com).


От исследовательской лаборатории ВМС США нам остаётся ждать тестов "рейлгана" на полной мощности.