На мировом рынке всё большую популярность приобретают домашние 3D принтеры - это специальное устройство, которое позволяет выводить трёхмерную информацию, т.е. создавать физические объекты, в отличие от обычного принтера, который может выводить двухмерную информацию на листе бумаги краской. В основе 3D-печати лежит принцип послойного создания твёрдой модели.

3Д-принтеры успешно конкурируют на рынке с другими технологиями изготавливающими макеты из пластика, а также намного быстрее справляются с производственными задачами.

Что касается цен, то на сегодняшний день эти устройства стали более доступными для каждого, у кого есть желание пользоваться 3D-принтером в домашних условиях, к тому же они довольно-таки компактные на сегодняшний день. Предлагаем к рассмотрению варианты лучших моделей на производственных рынках.

Обзор лучших 3D принтеров

Домашний принтер для всей семьи, отличающийся компактностью, привлекательным дизайном и простотой использования - это Cube 3D. Он отлично подходит для развлечения и создания сувениров.

Программное обеспечение принтера Cube 3D. автоматически адаптируется к операционной системе на компьютере после подключения через USB. Преимуществом данной модели является простота использования и настройки, а также возможность передавать данные по Wi-Fi. Для печати используется специальный пластик ABS. Область печати составляет 14х14х14 см, масса - 4,3 кг (без картриджа). У него только одна печатающая головка, что выдаёт толщину слоя 250 микрон (0.25 мм). Одного картриджа хватает на 13-14 моделей средних размеров.

Основные преимущества:

  • простота установки программного обеспечения;
  • толщина слоя составляет 0,2мм.
Если вы искали принтер для всей семьи, то Cube 3D - отличный выбор. Стоимость данной модели 2500 - 2600 долларов (82 000 - 86 000 рублей).

Видео как работает Cube 3D Printer:


Следующий аппарат, предлагаемый вашему вниманию - это Cube X. Серия принтеров CubeX (Duo, Trio), модели, как вы поняли, отличаются только количеством печатающих головок, они значительно дороже предыдущих моделей, тем не менее, достаточно популярна среди потребителей России и других стран.

Cube X. опережает своего предшественника Cube 3D по технологическим характеристикам, т.к. может создать модель не в виде сувенира, а воссоздать любой предмет в натуральной величине. Данная модель 3D принтера печатает только в одном цвете, тем не менее, цветовая гамма богата оттенками, и это спасает ситуацию. Одна печатающая головка в Cube X, две головки в Cube X Duo и три в модели Cube X Trio. Область печати 27.5х26.5х24 см, для печати используется пластик PLA. Вес без картриджа составляет 36 кг.

Основные технические характеристики модели:

  • скорость печати 54 см3 в час (15 куб.мм в секунду, всё зависит от материала);
  • точность печати (0,1 мм);
  • автоматически устанавливается программное обеспечение;
  • есть возможность передачи данных по Wi-Fi.
Приобрести Cube X можно приблизительно за 3700 - 3900 долларов (примерно 128 000 рублей). С двумя головками (Duo) обойдётся за 4700$ (154 000 руб.). CubeX TRIO стоит 5700$ (187 000 руб.).

Видео работы принтеров серии Cube X:

3. 3Д принтер UP!


Фото UP! Plus


Наиболее дешёвый и простой в использовании - это серия UP! 3D принтеров (Plus, Plus 2 и Mini), отличаются дизайном, размерами и мелкими техническими характеристиками. Данный прибор выступает незаменимым устройством дома, для работы следует установить на компьютер программное обеспечение UP! Software, и всё готово к использованию. Вы можете печатать модели любой сложности, т.к. этот 3Д принтер автоматически определяет неустойчивые места и создаёт под них опоры, после печати они легко отсоединяются от основного объёма. Область печати данного устройства - 24х26х35 см, масса - 5 кг (модель Mini весит 6 кг.). Количество головок у всей линейки - 1. Для печати используется ABS пластик.


Фото UP! Mini


Основными характеристиками являются:
  • высокая скорость печати (0,15мм);
  • распознавание формата STL, сохранение в формате UP3;
  • просмотр 3D.
Приблизительная стоимость UP! 3D Printer Plus - 2300$ (75 000 руб.). Цена на UP! Plus 2 - 2400$ (79 000 руб.), а UP! 3D Mini Printer стоит приблизительно 1350 $ (45 000 руб.).

Видео - демонстрация работы UP! 3D Printer Plus:


Следующий домашний 3Д принтер - Felix 2.0 - достойный аппарат от компании FelixPrinters. Благодаря небольшому размеру устройства, данная модель очень удобна в использовании в домашних условиях. Преимуществом Felix 2.0 является высокая точность работы и качество изобретаемых изделий. Также он оснащён подогреваемым столом, чтобы изделие равномерно остывало.
Размеры устройства 45х50х53 см, масса - 6,7 кг.

Основные технические характеристики:

  • область печати 25, х20,5х23,5 см;
  • скорость печати 54 см3 в час;
  • толщина нити - 1,75 мм;
  • используемое программное обеспечение: Repetier Host, Slic3r Pronterface;
  • формат исходных, электронных файлов - .STL;
  • работает при помощи ОС Windows;
  • максимальная температура печати 280 °C;
  • энергопотребление - блок питания FlexATX, 12В 250Вт.
Расходные материалы - пластик PLA или ABS, а также нейлон. Стоимость Felix 2.0 составляет около 2550 $ (85 000 руб.).

Видео 3D printer Felix 2.0 в работе:

5. Picaso Builder


Picaso Builder - принтер, который может применяться при создании скульптур, архитектурных макетов, прототипов промышленного дизайна, подарков, сувениров и так далее, используя технологию струйной печати. Отличное решение, как для новичков трёхмерной печати, так и для профессионалов.

Технические характеристики 3D принтера Picaso Builder:

  • масса без картриджа - 6,5 кг;
  • размер без картриджа - 47?42,2х44,1 см;
  • расходными материалами является пластик PLA или ABS;
  • область печати - 20?20?20 см;
  • одна головка.
Среди преимуществ данной модели можно выделить:
  • механизм подачи не забивается материалом для производства макета;
  • скорость печати - 25 см в час;
  • толщина слоя очень маленькая и составляет 100 микрон (0,1мм);
  • толщина стенки 190 микрон (0,19 мм);
  • поддержка ОС Win/Mac, программное обеспечение Poligon (на русском языке).
Купить 3D принтер Picaso Builder можно в пределах 3100 - 3200 $ (104 000 руб.).

Видео: как работает Picaso Builder

Для создания необходимых моделей вручную может понадобиться несколько недель и даже месяцев, в результате увеличиваются сроки выпуска продукции и повышаются затраты на разработку. С помощью 3D-принтеров можно за несколько часов создать модель изделия и избавиться от ручного труда, исключая вероятность ошибок присущих человеку. Самое главное это незаменимый помощник в доме для создания замечательных сувениров, подарков, деталей крепления и не только. Прекрасный друг и товарищ вашему ребёнку и финансово доступный агрегат! Но перед тем как его купить, почитайте нашу статью: « для здоровья окружающих во время его работы».

Принтеры для трехмерной печати или 3D-принтеры – это устройства для изготовления объемных моделей. Аппараты узкой специализации обладают безграничными возможностями и сегодня используются в каждой сфере жизни современного человека. Несколько лет назад 3D-принтеры стали доступны и для домашнего использования, попутно охватив часть малого бизнеса.

История создания подобной техники зародилась еще в середине 80-х годов прошлого столетия, но слабое развитие компьютерных технологий «заморозило» активное внедрение трехмерной печати в быт и производство.

Ощутимый старт 3Д-принтеры получили только в 2005 году, наряду с совершенствованием компьютерных возможностей. Тогда публике был представлен первый трехмерный принтер, который печатал в цвете . Впоследствии техника претерпела немало изменений, было разработано современное программное обеспечение для управления процессом печати. В результате пользователям стал доступен функциональный агрегат, способный «печатать» чехлы для телефонов или новые 3D-принтеры.

Первый 3D принтер

Как это работает

Общий принцип работы трехмерного принтера в теории прост и понятен. В программе для 3D-моделирования создается объект или его часть (крупные модели делят на несколько элементов). Затем файл отправляется для обработки специализированной программой (для формирования G-кода), после чего в дело вступает техника. G-код делит цифровую модель на сотни горизонтальных дорожек, задавая траекторию печатающей каретке. На основание слой за слоем наносится расплавленный материал, создавая вполне осязаемый объект.

Схематическое изображение 3D-принтера

Всего существует семь основных технологий, используемых для трехмерной печати, но большая их часть нашла применение только в промышленных целях. Для любительской «пластиковой печати» и малого бизнеса разработаны относительно компактные и недорогие аппараты.

  • Технология Fused Deposition Modeling (иначе FDM-принтеры) получила самое массовое распространение для трехмерного моделирования и кулинарии. Материал разогревается и подается на платформу через сопло печатающей головки. Объект «вырастает» на плоскости, а его размеры ограничены параметрами платформы.

  • Технология Polyjet разработана в 2000 году и сегодня принадлежит компании Stratasys. Создание трехмерных объектов производится посредством полимеризации фотополимера под действием УФ излучения. Фотополимер – дорогой и хрупкий пластик, потому в быту такие принтеры практически не используют, но благодаря точной детализации моделирования аппараты применяют в медицине и промышленности (для создания прототипов).

Все о том, как работают современные принтеры для трехмерной «пластиковой печати» можно узнать из тематического видео, например, этого . Также в них часто демонстрируют, как аппарат работает с различными материалами для изготовления объекта.

Управление процессом печати

Как правило, пользователю нужно произвести ряд настроек непосредственно перед началом печати.

  1. Подключение оборудования к ПК осуществляется через USB-кабель.
  2. Калибровка перемещения сопла относительно платформы.
  3. Настройка и управление нагревом платформы и сопла-дозатора.
  4. Мониторинг соотношения температур.
  5. Управление процессом печати (экструдером) – настройка скорости подачи материала, замена бобин пластика.

Контроль над печатью осуществляется через ПК. Для создания объекта от идеи до результата пользователю необходимы специальные программы для трехмерного моделирования и управления аппаратом.

Современные технологии пока не позволяют создать принтер, где все операции проводятся путем нажатия пары клавиш, потому необходимо освоить немало специфических программ и основы моделирования.

Перед запуском печати оператор калибрует принтер, настраивая его относительно стола-платформы. Базовая прошивка принтера представляет собой ряд настроек по умолчанию, а пользователь производит более точные настройки, в зависимости от используемого материала. Так, для создания объемных элементов на основе ABS или PLA задается разная температура плавления. В процессе печати, оператор через ПО следит за работой. Весь процесс создания модели может занимать от нескольких часов до суток, здесь ключевым фактором является точность исполнения: точные объекты с детальной прорисовкой производятся дольше, чем более грубые.

Где можно применить 3D-принтер

Область применения 3D-принтеров довольно широка: от любительских поделок до бизнеса. Предприниматели наряду со студентами архитектурных отделений первыми заметили огромный потенциал «пластиковой печати».


Также объемное моделирование используют в ювелирной промышленности и всех сферах дизайна и проектирования.

Если ранее печать осуществлялась пластиком, то сегодня разнообразие материалов впечатляет. Производители изготавливают различные основания, например, имитирующие натуральное дерево. Кроме того, в качестве материала для печати можно выбрать не только полимеры, но и нейлон. Эту идею очень быстро подхватили дизайнеры и создали целые коллекции одежды .

Азартные коллекционеры сполна оценят потенциал «пластиковой печати», ведь теперь есть возможность воссоздать любой объект: модели самолетов, знаменитых персонажей, предметов искусства. Редкие коллекционные экземпляры могут стоить довольно дорого, как очень хороший принтер для дома, и здесь выбор очевиден.

Брать или не брать: достоинства и недостатки оборудования

Использование объемной печати предоставляет пользователям обширные возможности. Ключевое преимущество техники – воспроизведение любого трехмерного объекта, и исключений здесь практически нет. Все, что может быть изготовлено из пластика, можно «напечатать», будь то дорогой в оригинале бампер от иномарки или проект будущего торгового центра на выставке архитекторов. Решающим фактором станет размер оборудования, а выражаясь точнее – размер его рабочего стола.

Потенциал «пластиковой печати» усложнен трудоемким процессом подготовки и управления, требующим узкоспециализированных знаний. Неопытный пользователь не всегда сможет спроектировать в 3D-MAX даже простую геометрическую фигуру, не говоря о собственном портрете. Чтобы пользоваться техникой, ее необходимо освоить, а этой займет некоторое время.

Второй недостаток 3D-принтера – его габариты . В продаже доступны и компактные модели, но их предельные размеры печати слишком скромны, хотя вполне подойдут для поэтапного изготовления инсталляций или архитектурных проектов.

Конечно, в качестве игрушки приобретать 3D-принтер нерационально, средняя стоимость моделей дешевого сегмента превышает 30 000 рублей. Покупка будет выгодна, если оборудование будет выполнять определенную задачу: приносить прибыль, развивать навыки, получать образование, заниматься творчеством, помогать в работе.

В ближайшем будущем можно ожидать новых разработок в этой области. Сегодня уже можно напечатать настоящий жилой дом из обычной строительной смеси. Естественно, такое оборудование недоступно для бытового использования, но сам факт применения новых материалов для печати обещает методичное расширение возможностей объемной печати в домашних условиях.

Объёмная 3D печать материального объекта по его трёхмерной компьютерной модели - это уникальная технология современности, которую ожидают большие перспективы в будущем. Ещё недавно устройства, использующие её, казались фантастикой, а сегодня они превратились в реальность, и стали уже доступными даже для домашнего пользования. Хотя стоимость 3D-принтеров ещё высока, и превышает цену других, компьютерных девайсов, они находят всё большее практическое применение не только для прикладного творчества, но и для различных сфер бизнеса. Постоянное развитие и совершенствование этой технологии уже привело к созданию промышленных устройств. Какой из них выбрать?

Что собой представляет 3D-принтер, его назначение

Периферийное компьютерное устройство, которое по цифровой объёмной модели создаёт материальный объект путём послойного нанесения быстро затвердевающего материала, называется 3D-принтером. Для работы такого устройства требуется компьютерная трёхмерная модель, выполненная в любом из 3D-редакторов либо полученная на 3D-сканере. Сегодня существует несколько разновидностей, в зависимости от используемой технологии:

  • FDM и DIW 3D-принтеры, применяющие метод экструзии, основанный на продавливании расплавленного материала через тонкое отверстие в специальном устройстве, называемом экструдер (в принтерах первого типа на охлаждаемую поверхность платформы послойно наносится разогретый до предела плавления термопластик, а во втором - керамический шлам, который называют чернилами, в крупных архитектурных моделях может применяться густой керамический шлам);

    Принтеры для 3D-печати, работающие по экструзионной технологии (FDM) изготавливают макет путём послойной укладки расплавленного пластика, выдавливаемого через экструдер. Печатающая головка движется по осям X и Y, а печатная платформа - вниз по оси Z

  • принтеры типа SLA-DLP, использующие метод фотополимеризации, при котором применяется жидкий фотополимер, а затвердение каждого его слоя производится путём засвечивания ультрафиолетовым лазером;

    В 3D-принтерах, построенных на технологии SLA, изделиеие формируется в ванночке, заполненной фотополимерной смолой. Под действие УФ излучения лазера, действующего на тонкий слой смолы, она затвердевает и основание опускается вниз на толщину следующего слоя

  • принтеры, в которых для создания трёхмерного материального объекта используется выровненный слой порошка, скрепляющийся послойно различными методами, путём нанесения клея способом струйной печати (3DP-принтеры) или его плавления электронным лучом в вакууме (EBM), лазерным излучением (SLS или DMLS, в зависимости от типа порошка) и нагревательной головкой (SHS);
  • EBF 3D-принтеры, в которых для получения материальной модели применяется проволока, расплавляющаяся под действием электронного излучения;
  • принтеры, построенные на принципе ламинирования, или послойного нанесения плёнки, в каждом слое которой, вырезается контур детали специальным резаком или лазером;
  • принтеры с точечной подачей порошка, расплавляемого лазерным или электронным излучением;
  • устройства, работающие с использованием метода многоструйного моделирования (MJM), когда способом струйной печати наносится быстро застывающий материал;
  • биопринтеры - инновационные периферийные компьютерные устройства, которые только начинают внедряться, они используют клетки живого организма для формирования внутренних органов, и в будущем будут способны создавать полноценный материал для трансплантологии (уже имеются случаи успешного изготовления и пересадки челюсти для человека и щитовидной железы для лабораторной мыши).

Видео: как работает механизм

Возможности у такого уникального периферийного компьютерного устройства практически неограничены. Сегодня он уже применяется для следующих целей:

  • быстрого создания точных макетов в архитектурном проектировании, конструировании различных механизмов и машин, а также в дизайне интерьеров и ландшафта с целью доработки проекта и презентации его заказчику;
  • изготовления любых деталей сложной формы для единичного или мелкосерийного производства, а также запчастей для ремонта различных устройств;
  • изготовления моделей и форм для литья, в том числе и при создании ювелирных изделий;
  • строительства зданий и сооружений любой сложности, для чего используют специальные устройства, напоминающие башенный кран, вместо тросов у которого имеются магистрали для подачи жидкого бетона (такое устройство позволяет возводить 1 этаж за 10 часов, что значительно сокращает сроки строительства);
  • создания протезов и внутренних органов для трансплантации в медицине;
  • изготовления макетов сложных устройств для наглядных пособий учебных заведений;
  • создания геоинформационных систем, представляющих собой объёмную карту местности в цвете, с точным отображением рельефа;
  • производства предметов домашнего обихода, различных аксессуаров и предметов для украшения интерьера;
  • разработки макетов упаковок и ёмкостей для маркетинговых целей;
  • изготовление корпусов экспериментальной техники - автомобилей, систем автоматизации и различных электронных устройств;
  • изготовления рекламной и сувенирной продукции;
  • производства эксклюзивной одежды и обуви по фигуре и размерам конкретного клиента, полученным путём 3D сканирования.

Этот перечень наглядно демонстрирует перспективы применения 3D-принтеров и их востребованность в самых разных сферах человеческой деятельности.

Как выбрать: параметры, на которые нужно обращать внимание

Покупая любое сложное устройство, нужно чётко определить для себя цели, для которых вы собираетесь его использовать. От этого будет зависеть какие рабочие параметры его вам лучше подойдут. Учитывая, что такое периферийное устройство стоит недёшево, следует наиболее тщательно подбирать его, учитывая все рабочие параметры, чтобы потом не пожалеть о покупке.

Прежде всего, нужно определиться с типом принтера по применяемой технологии 3D печати. Самые популярные и доступные модели сегодня для домашнего пользования или занятий малым бизнесом - это:

  • FDM принтеры, в качестве материала использующие полимерную нить из пластика различных видов, и имеющие довольно хорошее качество печати и наиболее низкую цену;
  • SLA устройства на фотополимерах, имеющие более высокое качество печати и цену, идеально подходящие для производства ювелирных изделий;
  • наиболее дорогие из периферийных устройств этой группы - приборы SLS типа, которые расплавляют порошок лазером, покупать их для дома нецелесообразно, и они могут подойти лишь для бизнеса, из-за высокой стоимости (до 30 тысяч долларов).

Среди основных критериев выбора можно отметить следующие:

  1. Тип применяемого для печати материала. Выбирая 3D-принтер, нужно учитывать, что расходный материал для устройств типа FMD будет стоить дешевле, чем для SLA-принтеров. Для тех, кто решил приобрести FDM-принтер, существует большой выбор пластиков разных расцветок и видов (PLA, ABS, HIPS, PVA и другие), но идеальным для новичков будет полимерная нить из PLA пластика, поскольку этот материал более лёгкий в пользовании, и изделия из него получаются идеально ровными и гладкими. Для выбравших же 3D-принтер SLA придётся приобретать более дорогой материал в виде фотополимерных смол. К непрофессиональным моделям принтеров лучше всего покупать фотополимер серий Vera, Somos или Tanga, отличающиеся прозрачностью, высокой прочностью, термостойкостью и стабильностью пластика.
  2. Точность печати. Она более высокая у принтеров SLA. Точность же воспроизведения модели в устройствах экструзионного типа во многом зависит от толщины слоя, который укладывается принтером при печати. А значит, чем тоньше отверстие сопла экструдера, тем выше и чёткость воспроизведения цифровой модели в материальном объекте. Сегодня выпускаются модели принтеров с разным диаметром отверстия сопла от 0,1 до 0,4 мм. При этом нужно понимать, что чем меньше отверстие сопла экструдера, тем больше времени уйдёт на изготовление модели. Здесь каждый должен выбирать сам, что для него важнее - точность отображения 3D-модели или скорость печатания.
  3. Область печати, определяющая какого максимального размера объект можно распечатать данным принтером. Имеется, конечно, возможность изготавливать и объекты большего размера, но только по частям, склеивая их специальным клеем. Для этого с помощью программы 123D Make цифровая модель разбивается на отдельные части. Но, если вы не хотите заниматься склеиванием, то при выборе принтера сопоставляйте желаемые размеры изготавливаемых макетов с областью печати конкретной модели.
  4. Особенности конструкции. Здесь имеет значение открытая она или закрытая, и из каких материалов изготовлен корпус и несущие элементы. Эти факторы больше всего влияют на жёсткость всей конструкции, от которой зависит скорость передвижения печатающей головки, а также способность несущих частей устройства гасить колебания и вибрацию от нескольких электродвигателей, отвечающих за перемещение головки принтера по всем трём осям (X, Y и Z) и его стола по оси Z. Изготовленный из дерева корпус хоть и покажется кому-то слишком бюджетным вариантом, но зато он отлично поглощает колебания. Изготовленные же из алюминия или стали несущие конструкции будут более прочными и долговечными. Принтеры типа SLA лучше покупать с хорошо проветриваемой рабочей камерой, что будет способствовать более быстрому отвердеванию фотополимера. А для устройств FDM типа, особенно при работе с ABS пластиком или нейлоном, имеющими высокую степень усадки при быстром остывании, лучше приобрести 3D-принтер с закрытым корпусом и облицовкой рабочей зоны.
  5. Наличие вспомогательного софта. Принтеры для объёмной печати - это высокотехнологичные компьютерные устройства, для работы которых требуются специальные программы. Прежде всего, 3D-принтер должен распознавать и уметь читать все 3D-редакторы и различные форматы ввода данных. К последним относятся языки STL и X3D, а также стандарт VRML. Существует множество вспомогательных программ, позволяющих производить самые разнообразные действия по подготовке к печати и созданию материальной модели. Такими являются, например, программы слайсеры, позволяющие разрезать объект на части для вывода его на печать частями (Kissslicer или Cura) или программа 123D Catch, предназначенная для работы с облачным сервисом, и позволяющая получить трёхмерную цифровую модель объекта по его фотографиям, сделанным с разных ракурсов. Наличие вспомогательных программ, поставляемых изготовителем принтеров, значительно облегчает работу с такими технически сложными устройствами. И на этот факт тоже следует обращать внимание при их выборе.

Наиболее подходящие 3D-принтеры для малого бизнеса

Объёмная печать с использованием 3D-принтеров, является сегодня наиболее перспективным направлением для малого бизнеса. С помощью этих компьютерных устройств, не требующих слишком больших финансовых вложений, как для промышленных принтеров, можно наладить мелкосерийное производство различных товаров.

Из большого многообразия, представленных на рынке принтеров для этих целей больше всего, подойдут модели, удовлетворяющие следующим критериям:

  • качество печати должно быть довольно высоким, чтобы создавать уникальные и реалистичные модели, интересные для продажи, что сразу исключает из выбора относительно дешёвые принтеры, стоимостью до 1000 долларов;
  • желательно, чтобы принтер был приспособлен для цветной печати (принтеры FDM, DIW, 3DP или EBF), что позволит сэкономить время на раскрашивание товара при мелкосерийном производстве;
  • устройство должно поддерживать работу хотя бы с двумя основными видами пластиков (ПЛА И АБС), что расширит возможности его использования, и позволит производить продукцию для детей (ПЛА пластик предназначен именно для детских товаров);
  • цена расходных материалов, используемых 3D-принтером, должна обеспечивать приемлемую себестоимость готовых изделий, достаточную для нормального уровня рентабельности бизнеса;
  • размер рабочей камеры должен соответствовать габаритам предусмотренных для производства моделей, при этом следует учитывать, что принтеры с большей областью печати и стоить будут дороже.

В любом случае выбор принтера будет зависеть от того, каким видом бизнеса вы предполагаете заниматься. Для производства мелких поделок подойдут устройства экструзионного типа, а для изготовления ювелирных изделий или зубных протезов - более дорогие принтеры на фотополимерах. Из наиболее подходящих для малого бизнеса можно назвать следующие модели:

  • Flashforge Creator Dual , с объёмом рабочей камеры 5,2 литра и двумя экструдерами, принтер поддерживает работу с тремя видами пластиков - ABS, PLA, PVA и имеет точность печати 0,1 мм;
  • 3Dison pro AER от корейской компании Rokit, с объёмом рабочего пространства 15,3 литра способный работать с 50 материалами, имеющий высокую скорость печати (до 1000 мм/сек) и толщину слоя от 0,025 мм;
  • стереолитографический 3D-принтер типа SLA модели

    Pico 2 от компании Asiga, идеальный выбор для тех, кто решил заняться ювелирным делом или оказанием стоматологической помощи, устройство работает от твердотельного LED источника ультрафиолетового излучения.

Какое устройство выбрать для дома

Учитывая пока ещё высокую стоимость периферийных компьютерных устройств для трёхмерной печати, вряд ли будет целесообразным покупать для домашнего пользования слишком дорогой и навороченный 3D-принтер стоимостью в 5 - 10 тыс. долларов и выше. Вполне достаточно будет устройства по цене от 500 долларов до 3 тысяч. Здесь всё зависит от требовательности покупателя к качеству печати и его финансовых возможностей.

Лучше всего, если 3D-принтер для дома будет иметь простое и понятное управление, удобный интерфейс и идеальное соотношение цены и качества. Все востребованные сегодня для домашнего пользования принтеры можно разделить на следующие группы по ценовым категориям:

  • бюджетные модели, наиболее доступные из этого вида устройств по цене от 300 до 1 тысячи долларов;
  • принтеры среднего класса (1–1,5 тыс. долларов);
  • довольно высокого класса устройства по демократичной цене от 1,5 до 3 тысяч долларов.

Среди наиболее популярных принтеров для 3D-печати, можно отметить следующие модели:

  • Printrbot Simple , стоимостью 300$, который относится к принтерам экструзионным (FMD), и продаётся в разобранном виде - самостоятельная сборка устройства поможет лучше разобраться с его конструкцией и понять принцип работы этого оборудования;
  • Kino XYZ printing da Vinci 1.0 - это новый принтер тайваньской компании XYZ printing, имеющий высокое разрешение печати сопоставимое с более дорогими устройствами - 0,1 мм, стоимость его около 500$ (в работе используется технология послойного наложения расплавленного пластика - FDM);
  • Cubify CubeX , относящийся к среднему ценовому сегменту, со стоимостью 1300$, и отличающийся высоким качеством печатания и скоростью создания модели с большими её размерами, этот принтер выпускается в трёх вариантах конструкции - с 1, 2 и 3 экструдерами, что позволяет получать цветные макеты компьютерных моделей, может подключаться к компьютеру через USB соединение или Wi-Fi модуль.
  • Afinia H-Series H479 , имеющий высокую точность печати (0,15 - 0,4 мм), удобное программное обеспечение, который работает с недорогой нитью из ABS пластика приличного качества, стоит такое устройство 1,5 тысячи долларов.

Рейтинг лучших 3D-принтеров

Самым известным в мире экспертом в области объёмной печати является зарубежный портал 3D Hubs, который регулярно составляет рейтинг лучших моделей печатающих периферийных устройств в различных номинациях. По версии этого интернет-ресурса, лучшими в 2017 году были названы следующие модели 3D-принтеров:

  1. Original Prusa i3 MK2 производства чешской компании Prusa Research. Этот принтер предназначен для любителей электроники, являющихся новичками в вопросах 3D-печати, которые смогут самостоятельно собрать его из комплектующих, поскольку он продаётся в разобранном виде. Устройство относится к экструзионным моделям типа FDM, и поддерживает работу с 15 видами пластика, включая ABS и PLA, Carbon и Nylon, HIPS и FilaFlex, Bamboofill, Laybrick и другие. Эта модель в работе может использовать одновременно до 4 различных материалов. Она имеет интегрированную ось Z и нагревательный стол с печатной поверхностью из пластика типа PEI. Принтер такой модели имеет достаточно большую область печати размерами 250 x 210 x 200 мм, минимальную толщину укладываемого слоя пластика 0,05 мм и скорость печатания 40 - 60 мм в секунду.
  2. BCN3D Sigma R17 (Release 2017) . Эта модель 3D-принтера, выпущенная компанией из Испании BCN3D Technologies, является продолжением популярной во всём мире линейки устройств для трёхмерной печати Sigma. В новой модели применён независимый двойной экструдер, позволяющий избежать деформаций при смене цвета изделий, а также одновременно выполнять печать двух идентичных макетов. В модернизированном устройстве применена новая система охлаждения и обновлена технология микрочипов, управляющих мощностью. Всё это позволило сделать работу принтера более бесшумной. Sigma R17 имеет высокую точность печати от 0,125 мм и область построения макета размерами 297 х 210 х 210 мм. В работе применяется пластиковая нить из следующих полимеров ABS, PLA, HIPS, PET и Exotics, которые экструдер выдавливает с минимальной толщиной слоя 0,05 мм.
  3. Formlabs Form 2 - стереолитографический (SLA) 3D-принтер, выпускаемый американской компанией Formlabs, оснащённый мощным лазером, сенсорным дисплеем и Wi-Fi модулем. Устройство имеет область печати размером 145 x 145 x 175 мм и толщину слоя 0,025 - 0,1 мм. Этот принтер работает на жидких фотополимерах и допускает использование смол других производителей. Он оснащён платформой с подогревом и встроенной панелью управления.
  4. PowerSpec 3D Pro. Данная модель производится в Китае и относится к ценовой категории бюджетных 3D-принтеров. Его отличительными чертами являются прочность, высокая скорость печати и наличие в конструкции двойного экструдера, что является редкостью для недорогих моделей. 3D Pro поддерживает работу с тремя видами пластиков (PLA, ABS и PVA) и имеет высокую точность печати. Толщина укладываемого слоя 0,1 - 0,3 мм.
  5. OrdBot Hadron. Этот принтер выпускает компания ORD Solutions из Канады. Модель представляет собой механическую платформу для 3D-печати, изготовленную из алюминия. Она имеет высокую жёсткость, надёжность и скорость печати (400 мм/с). Принцип её работы построен на технологии FDM. Устройство поддерживает работу с двумя видами пластиков - ABS и PLA, и имеет область печати размером 190 х 190 х 150 мм. В конструкции этого принтера предусмотрена возможность подключения второго экструдера, сервопривода, жидкокристаллического экрана и другого оборудования, что сможет существенно модернизировать устройство уже после его покупки.

Технологии трёхмерной 3D печати ещё только начинают завоёвывать компьютерный рынок, и стоимость принтеров для воплощения цифровой модели в материальный объект пока довольно высокая. Но за этими технологиями будущее, и наверняка 3D-принтеры в скором времени появятся в каждом доме, превратившись в обыденное дополнение к компьютеру. Уже сегодня многие модели стали доступными для людей со средним уровнем достатка, и широко используются не только в малом бизнесе, но и в быту. Пользуясь изложенными рекомендациями можно легко подобрать подходящий принтер для домашнего пользования или небольшого собственного бизнеса.

Уже давно каждый может самостоятельно напечатать у себя дома любые тексты, фотографии и даже картины. Новшеством являются 3D-принтеры, которые, как обещают их производители, способны создавать из тонких слоев пластика практически любой предмет размером от грецкого до кокосового ореха.

Если у вас достаточно креативности и изобретательского духа, 3D-принтер откроет бесконечные возможности для вашей домашней мастерской. Однако с этой молодой технологией пока связано достаточно много проблем. Чтобы облегчить вам выбор, мы собрали несколько самых интересных устройств нового типа в техническом центре CHIP и проверили, как они выполняют «обещания» своих создателей.

Приобрести некоторые из представленных принтеров можно у дистрибьютеров или заказать с доставкой почтой. Однако следует учитывать, что тогда их цена будет выше из-за таможенных пошлин. Проще всего вводятся в эксплуатацию устройства, которые продаются уже смонтированными, - MakerBot, Sintermask, Pearl и iRapid. Принтер Ultimaker поставляется смонтированным не полностью или в виде набора деталей, для сборки которых опытному инженеру тест-центра CHIP потребовались целых 16 часов работы. Velleman K8200 продается только как сложный комплект отдельных компонентов, требующий 24 часов сборки.

У большинства устройств выявились проблемы, влияющие на качество печати. Так, у Ultimaker длинноваты направляющие, и их крепления при печати ослабевают. Мотор принтера Velleman стоит неровно (фото справа), а ребристую подставку нужно накрывать стеклянной пластиной. У продающегося смонтированным MakerBot болтается блок контроллера - впрочем, на результате печати это, к счастью, не сказывается. Внешний вид устройств различен: от голых алюминиевых стоек принтера Velleman до мощного фанерного корпуса Ultimaker или аккуратного пластмассового ящика Pearl.


Различия в повседневной работе

Технология 3D-печати существует не так долго. Этим объясняется то, что работа с устройствами относительно сложна. Перед каждым заданием пользователю следует проверить и отрегулировать печатную платформу, на которой возникают готовые предметы. После первых - неизбежно неудачных - попыток необходимо оптимизировать настройки печати. Некоторые мелочи бывают очень полезны. Так, MakerBot имеет всего три регулировочных винта, автоматически приводит печатающую головку в правильную позицию и отображает на дисплее необходимые указания - все это значительно облегчает калибровку.


Регулировать модели Pearl и Fabbster тоже достаточно просто. С остальными устройствами, имеющими по четыре винта и требующими ручной отладки точек калибровки, иногда приходится возиться по полчаса, пока все будет правильно настроено. Изрядно раздражает Ultimaker, у которого часто приходится дополнительно тщательно регулировать его подпружиненное основание.


Заправка материалом для печати почти у всех протестированных принтеров очень проста. В них применяются бобины с пластиковой нитью, толщина которой составляет приблизительно 2 мм. Волокно продевают в направляющую трубку, вставляют в подающий механизм и, наконец, заправляют в печатающую головку. Исключение составляет лишь Fabbster со своими короткими полимерными прутками, которые нужно заряжать по одному, а это несколько более трудоемко. К тому же во время печати подача материала часто бывает ненадежна и прерывается. Зато такие филигранные изделия, как наша шахматная фигура (см. таблицу внизу), только выигрывают от того, что зазубрины на прутках позволяют точнее дозировать материал.


В плане управления все рассмотренные 3D-принтеры оснащены по-спартански: ни у одного из участников теста нет больше пяти кнопок и одного LCD-дисплея с небольшим разрешением. Однако большинство настроек можно установить исключительно с помощью программы управления принтером на ПК. Трехмерная модель, которую пользователь загружает из Интернета или создает самостоятельно, используя CAD-приложение, сначала импортируется в утилиту, которая поставляется вместе с устройством. Из 3D-модели ПО генерирует задание для управления принтером. Для этого пользователю необходимо задать различные параметры печати. Настройка качества печати определяет количество горизонтальных слоев (slices), на которые программа должна разложить модель.


Кроме того, в приложении задается создание поддержек для свисающих элементов и плотность заполнения пустот. Простыми, но достаточно функциональными оказались утилиты для MakerBot и Ultimaker. Программа Open Source под названием RepetierHost, которую используют создатели устройств Velleman и iRapid, обладает множеством настроек, но требует известных навыков работы с ней. Софт принтера Pearl недостаточно внятен, к тому же он крайне медленно работает при пересчете слоев - прежде всего, когда нужно подготовить и напечатать сразу несколько объектов.


Качество, скорость печати и шум

Чтобы перенести на принтер задание для печати, удобнее всего сохранить его на карте памяти SD. Дело в том, что из-за шума и запаха, неизбежных во время работы, 3D-принтер следует держать в отдельном, хорошо проветриваемом помещении, как правило, далеко от компьютера. Карты читают все устройства, кроме Velleman и iRapid - у них можно воспользоваться портами USB. После начала печати каждый принтер сначала прогревает свое экструзионное сопло на печатающей головке, это может занять от двух (Ultimaker) до добрых десяти (Velleman) минут.


Затем начинается непосредственно процесс работы - с более (Pearl) или менее (Velleman) громкими звуками. При оптимальном раскладе мелкий предмет готов через десять-двадцать минут, а вот для крупного может потребоваться несколько часов, если только печать не прервется (на начальном этапе нашего тестирования это происходило в половине всех случаев). Возможные причины ошибок разнообразны. Чаще всего предмет деформируется и открепляется. Как правило, это случается у принтеров, платформа которых не имеет подогрева. Если объект сложен и в нем недостаточно поддерживающих структур, он может осесть внутрь себя. В обоих случаях экструдер продолжает печатать «в пустоте», что приводит к запутыванию незакрепленной нити. Воздушный пузырь или засорившееся сопло могут остановить подачу материала. Избежать ошибок печати помогает только тщательная подготовка. Перед работой с крупными предметами следует отрегулировать печатную платформу, проверить правильность подачи материала и прочистить экструзионное сопло.

Если в совершенстве освоить все эти операции и научиться, как опытный ремесленник, делать оптимальные настройки для каждого печатаемого объекта, то можно снизить количество ошибок до 20%. В качестве материала в большинстве принтеров применяется пластик ПЛА. Это вещество, изготовленное на основе молочной кислоты, плавится при температуре от 150 до 160 °C. Так как оно имеет свойство тянуться нитями, пустоты в печатаемых предметах зачастую получаются не такими чистыми, как при применении альтернативного материала АБС.


Последний обладает более высокой температурой плавления - от 220 до 250 °C - и из-за большей разницы с температурой в помещении печатаемые предметы чаще деформируются. Поэтому принтер, работающий с пластиком АБС, должен иметь печатающую платформу с подогревом. Она будет поддерживать температуру создаваемого объекта до тех пор, когда он будет готов и сможет равномерно охладиться.

Результаты теста

Наиболее надежно и качественно работает MakerBot Replicator 2. Кроме того, его детали отличаются очень тщательной обработкой. Кстати, при подготовке данного номера поступила новость о выпуске двух новых моделей этого принтера. Цена миниатюрного Replicator Mini (99x99x124 мм) в США составляет $1375. Профессиональная модель, способная работать без ПК, под названием Z18 позволяет печатать изделия до 45 см высотой.

Опытным пользователям вполне подойдет устройство Ultimaker. Это быстрый и хороший принтер, требующий, однако, регулярной дополнительной настройки. Недавно появилась его обновленная модель, Ultimaker 2. При тех же габаритах она может напечатать объект большего размера. Pearl - это настоящая удача для начинающих: он не требует сложной подготовки, и дает в итоге грубоватую, но вполне приемлемую печать.

Появление на рынке 3D-принтеров ознаменовало новую эпоху. Если раньше продукция, разработанная на базе высоких технологий, в бытовом хозяйстве позволяла решать привычные задачи, то в случае с трехмерной печатью предлагается новый способ применения устройств. Разумеется, новым он является только для рядового пользователя, так как в промышленности и на производственных предприятиях схожие технологии используются давно. Но в любом случае печать на 3D-принтере значительно расширяет возможности потребителя, к освоению которых, как показывает практика, готовы далеко не все. Во многом это связано со сложностью технологической реализации аппаратов, а также с нюансами их эксплуатации.

Но самые интересные вопросы касаются пользы от таких принтеров. Какие изделия позволяет создавать данное устройство? Для каких целей его продукцию можно использовать? И как работает 3D-принтер? Это важные вопросы, так как трехмерная печать все же является недешевым удовольствием. Поэтому приобретать соответствующее оборудование ради любопытства, мягко говоря, нецелесообразно. По крайней мере, стоит детальнее вникнуть в рабочие процессы печати и выяснить, какую пользу от них можно ожидать.

Что такое 3D-принтер?

Это устройство для трехмерной печати, посредством которого можно генерировать объемные предметы, дублирующие заранее подготовленную виртуальную модель объекта. По сравнению с традиционными принтерами, которые выводят электронный текст на бумагу, 3D-устройства обеспечивают вывод трехмерной информации, то есть создают объекты с реальными физическими параметрами. Собственно, для понимания того, как работает 3D-принтер, следует рассмотреть этапы изготовления твердых предметов с его помощью.

Принцип работы в общих чертах

Начинается работа с создания виртуального шаблона на компьютере с помощью специальной программы. Далее происходит обработка программным способом модели с целью ее разделения на слои. После этого в работу вступает техническая часть принтера, послойно формируя массу из композитного порошка для дальнейшего изготовления предмета. По мере заполнения специальной камеры материалом ось принтера распределяет массу по рабочей поверхности. После формирования каждого слоя головка устройства накладывает клеевую основу. Повторяется этот процесс до момента, пока не будет выполнен объект, разработанный в программе для печати. Важно учитывать, что изготовление на 3D-принтере может выполняться по разным технологиям. Соответственно, меняется и и свойства используемого материала, а также подходы к программной реализации задачи.

Технология быстрого прототипирования

Несмотря на различия в нюансах процесса изготовления, практически все устройства для трехмерной печати работают на принципе быстрого прототипирования. В соответствии с данной концепцией, производство осуществляется путем быстрого формирования опытных моделей для предварительной демонстрации возможностей будущего продукта. Задумывалась технология еще в 1980-х годах с целью создания образцов и заготовок. Сегодня этот метод известен как понимание которого и даст ответ на вопрос о том, как работает 3D-принтер и что отличает его функцию от традиционных подходов к изготовлению предметов. Так, если в процессе фрезерования, точения и происходит удаление материала, а ковка, прессовка и штамповка изменяют форму заготовки, то аддитивное производство предполагает увеличение массы материала посредством наращивания слоями. Иными словами, 3D принтер изменяет фазовое состояние веществ в определенных границах пространства. На сегодняшний день трехмерная печать развивается в нескольких направлениях, среди которых можно выделить стереолитографические технологии (STL), методы нанесения термопластов (FDM) и лазерное спекание (SLS).

Метод послойного наплавления термопласта

Это, пожалуй, наиболее популярная техника трехмерного изготовления. Распространенности FDM-аппаратов способствует сразу несколько факторов. В первую очередь в работе устройств используются относительно недорогие пластики. Также имеет значение простая техника эксплуатации, что особенно важно в работе с таким оборудованием. Как правило, технологии 3D-принтеров этого типа предусматривают работу с термопластиками, одним из которых является полилактид. Среди преимуществ этого материала отмечается экологичность, так как получают данный пластик из сахарного тростника и кукурузы.

Главным же элементом в самом принтере стоит назвать экструдер, который выполняет задачу печатной головки. Впрочем, в этой части не все так однозначно, поскольку элемент представляет собой комплекс отдельных компонентов. Если рассматривать термин «экструдер» в привычном понимании, то к нему будет относиться только часть головки в виде подающего механизма. Так или иначе, печатающая основа подает пластик для 3D-принтера путем нанесения расплавленной нити. Движение механической части обеспечивается электромотором. В итоге механизм направляет нить в нагреваемую трубу сопла, которая и формирует конечный объект.

Стереолитографические установки

Технология лазерной стереолитографии сегодня широко применяется в протезировании зубов. Это второй по популярности тип принтеров для 3D-печати. Отличительной чертой стереолитографических устройств является получение непревзойденно высокого качества объектов. Достигаются такие результаты благодаря разрешению аппаратов, которое может исчисляться единичными микронами. Поэтому вполне логично, что работа 3D-принтера на основе лазерной стереолитографии высоко ценится не только стоматологами, но и ювелирами. Программная часть устройства во многом напоминает FDM-аналоги, но есть и целый ряд особенностей технологии. Несмотря на тот факт, что принцип печати называют лазерной стереолитографией, все чаще функция такого оборудования базируется на светодиодных ультрафиолетовых проекторах.

Проекторные модели надежнее лазерных и по цене обходятся дешевле. Для них не нужны деликатные зеркала, обеспечивающие отклонение лучей, что упрощает конструкцию. В то же время печать на 3D-принтере с проекторами отличается высокой производительностью. Данное преимущество достигается благодаря тому, что происходит не последовательное, а полное засвечивание контура слоя.

Лазерное спекание

Еще одна разновидность применения лазерного метода. В этом случае применяется легкоплавный пластик. Мощный лазер прорисовывает по пластиковой основе сечение объекта, что приводит к плавлению и спеканию материала. Так происходит с каждым слоем до получения завершенной модели, которую подготовила программа для 3D-принтера в качестве заготовки. Остатки пластикового порошка стряхиваются с полученного предмета в конце рабочего процесса. Существенным недостатком таких аппаратов является создание объектов с пористой поверхностью. С другой стороны, это никак не влияет на прочность изделий. Более того, именно вышедшие из таких принтеров модели являются самыми долговечными. Сама же установка имеет сложную конструкцию и, как следствие, высокую стоимость. При этом и процесс изготовления отнимает много времени по сравнению с 3D-принтерами других типов. Как отмечают пользователи, скорость формирования модели составляет несколько сантиметров в час.

Расходные материалы

Основным материалом для создания моделей путем трехмерной печати является термопластик. Кроме уже упомянутых разновидностей, стоит отметить пластик для 3D-принтера в форматах ABS и PLA. Также используется нейлон, поликарбонат, полиэтилен и другие виды, также используемые в промышленности. При этом некоторые установки допускают и смешивание материалов, а также использование вспомогательных веществ, улучшающих качественные характеристики будущего изделия. Например, для этой цели используют который, в сущности, является той же разновидностью пластика PVA. Растворив его в воде, пользователь может создавать сложные геометрические фигуры.

Наиболее же экзотическим материалом для использования в подобных задачах является металл. Чтобы получить такое изделие, также применяют 3D-модели для печати на 3D-принтере, а отличия технологии сводятся к функции С ее помощью наносится связующая клейкая масса в места, куда указывает компьютерная программа. Далее на всю рабочую область головка наносит тонкий пласт металлической пудры. То есть металл не плавится, как в случае с пластиками, а накладывается и склеивается послойно в виде мельчайших частичек.

Управление работой принтера

Для начала стоит отметить операции, которые контролируются пользователем через компьютер. Это регулировка температуры сопла и рабочей площадки, темпы подачи материала и работы электромотора, который обеспечивает позиционирование печатающей головки. Все эти действия находятся под управлением электронных контроллеров. Как правило, современные модели таких устройств базируются на системе Arduino с открытой архитектурой. Что касается программного языка, то в принтерах используется так называемый G-код, построенный на командах управления оборудованием для печати. На этой стадии можно перейти к рассмотрению программ-слайсеров, которые обеспечивают перевод 3D-модели для печати на 3D-принтере в понятный контроллерам код. Сразу надо сказать, что такое программное обеспечение не имеет прямого отношения к разработке графических моделей.

Программное обеспечение

В перечень основных задач слайсеров входит установка параметров, в соответствии с которыми будет осуществляться печать. Выбор конкретной программы определяется типом принтера. Например, устройства RepRap подразумевают использование слайсеров, выполненных с открытым кодом. Среди таких можно выделить Replicator G и Skeinforge. Однако немало и производителей, которые рекомендуют использовать только фирменное ПО от конкретных компаний. Это, в частности, относится к аппаратам Cube от фирмы 3D Systems. Что же касается моделирования изделий, то этим занимается специальная программа для 3D-принтера, предназначенная для трехмерного проектирования. Обычно для этих целей используют CAD-редакторы, которые, впрочем, требуют определенного опыта работы с дизайном 3D.

Какие изделия можно получить?

Спектр возможностей трехмерных принтеров активно расширяется, что позволяет создавать продукцию для самых разных сегментов рынка. Если говорить о строительстве и архитектуре, то здесь очень ценятся возможности изготовление макетов, для которых, собственно, и разрабатывалась концепция аддитивного производства. В машиностроительной промышленности также широко используется 3D-принтер. Изделия в данном случае могут быть представлены и потребительской продукцией, и отдельными элементами для концептов. Как уже говорилось, высокая точность изготовления деталей была высоко оценена работниками медицины. Помимо протезирования, 3D-принтер используется в изготовлении макетов и образцов органов.