В 1772 году привёл решение математической задачи, из которого следовало существование этих особых точек.

Расположение точек Лагранжа [ | ]

Схема пяти лагранжевых точек в системе двух тел, когда одно тело намного массивнее другого (Солнце и Земля). В такой системе точки L 3 , L 4 , L 5 показаны на самой орбите, хотя фактически L 4 и L 5 будут находиться немного за ней, а L 3 - внутри неё.

Все точки Лагранжа лежат в плоскости орбит массивных тел и обозначаются заглавной латинской буквой L с числовым индексом от 1 до 5. Первые три точки расположены на линии, проходящей через оба массивных тела. Эти точки Лагранжа называются коллинеарными и обозначаются L 1 , L 2 и L 3 . Точки L 4 и L 5 называются треугольными или троянскими. Точки L 1 , L 2 , L 3 являются точками неустойчивого равновесия, в точках L 4 и L 5 равновесие устойчивое.

L 1 находится между двумя телами системы, ближе к менее массивному телу; L 2 - снаружи, за менее массивным телом; и L 3 - за более массивным. В системе координат с началом отсчета в центре масс системы и с осью, направленной от центра масс к менее массивному телу, координаты этих точек в первом приближении по α рассчитываются с помощью следующих формул :

r 1 = (R [ 1 − (α 3) 1 / 3 ] , 0) {\displaystyle r_{1}=\left(R\left,0\right)} r 2 = (R [ 1 + (α 3) 1 / 3 ] , 0) {\displaystyle r_{2}=\left(R\left,0\right)} r 3 = (− R [ 1 + 5 12 α ] , 0) {\displaystyle r_{3}=\left(-R\left,0\right)}

где α = M 2 M 1 + M 2 {\displaystyle \alpha ={\frac {M_{2}}{M_{1}+M_{2}}}} ,

R - расстояние между телами, M M 2 - масса второго тела.

L 1 [ | ]

Точка L 1 лежит на прямой, соединяющей два тела с массами M 1 и M 2 (M 1 > M 2), и находится между ними, вблизи второго тела. Её наличие обусловлено тем, что гравитация тела M 2 частично компенсирует гравитацию тела M 1 . При этом чем больше M 2 , тем дальше от него будет располагаться эта точка.

Пример: Объекты, которые движутся вокруг Солнца ближе, чем Земля, как правило, имеют меньшие орбитальные периоды, чем у Земли, если они не входят в зону влияния земного притяжения. Если объект находится непосредственно между Землёй и Солнцем, то действие земной силы тяжести отчасти компенсирует влияние гравитации Солнца, за счёт этого происходит увеличение орбитального периода объекта. Причём чем ближе к Земле находится объект, тем сильнее этот эффект. И наконец, на определённом приближении к планете - в точке L 1 - действие земной силы тяжести уравновешивает влияние солнечной гравитации настолько, что период обращения объекта вокруг Солнца становится равным периоду обращения Земли. Для нашей планеты расстояние до точки L 1 составляет около 1,5 млн км. Притяжение Солнца здесь (118 мкм/с² ) на 2 % сильнее, чем на орбите Земли (116 мкм/с² ), тогда как снижение требуемой центростремительной силы вдвое меньше (59 мкм/с² ). Сумма этих двух эффектов уравновешивается притяжением Земли, которое составляет здесь также 177 мкм/с² . Использование

Лунная точка L 1 (в системе Земля - Луна ; удалена от центра Земли примерно на 315 тыс.км ) может стать идеальным местом для строительства космической пилотируемой орбитальной станции , которая, располагаясь на пути между Землёй и Луной, позволила бы легко добраться до Луны с минимальными затратами топлива и стать ключевым узлом грузового потока между Землёй и её спутником .

L 2 [ | ]

Точка L 2 в системе Солнце - Земля, располагающаяся далеко за пределами орбиты Луны

Точка L 2 лежит на прямой, соединяющей два тела с массами M 1 и M 2 (M 1 > M 2), и находится за телом с меньшей массой. Точки L 1 и L 2 располагаются на одной линии и в пределе M 1 ≫ M 2 симметричны относительно M 2 . В точке L 2 гравитационные силы, действующие на тело, компенсируют действие центробежных сил во вращающейся системе отсчёта.

Пример: у объектов, расположенных за орбитой Земли, орбитальный период почти всегда больше, чем у Земли. Но дополнительное влияние на объект силы тяжести Земли, помимо действия солнечной гравитации, приводит к увеличению скорости вращения и уменьшению времени оборота вокруг Солнца, в результате в точке L 2 орбитальный период объекта становится равным орбитальному периоду Земли.

Точка L 2 в системе Солнце - Земля является идеальным местом для строительства орбитальных космических обсерваторий и телескопов. Поскольку объект в точке L 2 способен длительное время сохранять свою ориентацию относительно Солнца и Земли, производить его экранирование и калибровку становится гораздо проще. Однако эта точка расположена немного дальше земной тени (в области полутени) , так что солнечная радиация блокируется не полностью. В окрестностях этой точки уже находятся аппараты американского и европейского космических агентств - WMAP , «Планк» , «Гершель» и Gaia , в 2019 к ним присоединится «Спектр-РГ », а в 2021 «Джеймс Уэбб» .

Точка L 2 в системе Земля-Луна может быть использована для обеспечения спутниковой связи с объектами на обратной стороне Луны, а также быть удобным местом для размещения заправочной станции для обеспечения грузопотока между Землёй и Луной

Если M 2 много меньше по массе, чем M 1 , то точки L 1 и L 2 находятся на примерно одинаковом расстоянии r от тела M 2 , равном радиусу сферы Хилла :

r ≈ R M 2 3 M 1 3 {\displaystyle r\approx R{\sqrt[{3}]{\frac {M_{2}}{3M_{1}}}}}

где R - расстояние между компонентами системы.

Это расстояние можно описать как радиус круговой орбиты вокруг M 2 , для которой период обращения в отсутствие M 1 в 3 ≈ 1.73 {\displaystyle {\sqrt {3}}\approx 1.73} раз меньше, чем период обращения M 2 вокруг M 1 .

Примеры [ | ]

L 3 [ | ]

Три из пяти точек Лагранжа расположены на оси, соединяющей два тела

Точка L 3 лежит на прямой, соединяющей два тела с массами M 1 и M 2 (M 1 > M 2 ), и находится за телом с бо́льшей массой. Так же, как для точки L 2 , в этой точке гравитационные силы компенсируют действие центробежных сил.

Пример: точка L 3 в системе Солнце - Земля находится за Солнцем, на противоположной стороне земной орбиты. Однако, несмотря на свою малую (по сравнению с cолнечной) гравитацию, Земля всё же оказывает там небольшое влияние, поэтому точка L 3 находится не на самой орбите Земли, а чуть ближе к Солнцу (на 2 тыс. км , или около 0,002 %) , так как вращение происходит не вокруг Солнца, а вокруг барицентра . В результате в точке L 3 достигается такое сочетание гравитации Солнца и Земли, что объекты, находящиеся в этой точке, движутся с таким же орбитальным периодом, как и наша планета.

До начала космической эры среди писателей-фантастов была очень популярна идея о существовании на противоположной стороне земной орбиты в точке L 3 другой аналогичной ей планеты, называемой «Противоземлёй », которая из-за своего расположения была недоступна для прямых наблюдений. Однако на самом деле из-за гравитационного влияния других планет точка L 3 в системе Солнце - Земля является крайне неустойчивой. Так, во время гелиоцентрических соединений Земли и Венеры по разные стороны Солнца, которые случаются каждые 20 месяцев , Венера находится всего в 0,3 а.е. от точки L 3 и таким образом оказывает очень серьёзное влияние на её расположение относительно земной орбиты. Кроме того, из-за несбалансированности [прояснить ] центра тяжести системы Солнце - Юпитер относительно Земли и эллиптичности земной орбиты, так называемая «Противоземля» всё равно время от времени была бы доступна для наблюдений и обязательно была бы замечена. Ещё одним эффектом, выдающим её существование, была бы её собственная гравитация: влияние тела размером уже порядка 150 км и более на орбиты других планет было бы заметно . С появлением возможности производить наблюдения с помощью космических аппаратов и зондов было достоверно показано, что в этой точке нет объектов размером более 100 м .

Орбитальные космические аппараты и спутники, расположенные вблизи точки L 3 , могут постоянно следить за различными формами активности на поверхности Солнца - в частности, за появлением новых пятен или вспышек, - и оперативно передавать информацию на Землю (например, в рамках системы раннего предупреждения о космической погоде NOAA ). Кроме того, информация с таких спутников может быть использована для обеспечения безопасности дальних пилотируемых полётов, например к Марсу или астероидам. В 2010 году были изучены несколько вариантов запуска подобного спутника

L 4 и L 5 [ | ]

Если на основе линии, соединяющей оба тела системы, построить два равносторонних треугольника, две вершины которых соответствуют центрам тел M 1 и M 2 , то точки L 4 и L 5 будут соответствовать положению третьих вершин этих треугольников, расположенных в плоскости орбиты второго тела в 60 градусах впереди и позади него.

Наличие этих точек и их высокая стабильность обусловливается тем, что, поскольку расстояния до двух тел в этих точках одинаковы, то силы притяжения со стороны двух массивных тел соотносятся в той же пропорции, что их массы, и таким образом результирующая сила направлена на центр масс системы; кроме того, геометрия треугольника сил подтверждает, что результирующее ускорение связано с расстоянием до центра масс той же пропорцией, что и для двух массивных тел. Так как центр масс является одновременно и центром вращения системы, результирующая сила точно соответствует той, которая нужна для удержания тела в точке Лагранжа в орбитальном равновесии с остальной системой. (На самом деле, масса третьего тела и не должна быть пренебрежимо малой). Данная треугольная конфигурация была обнаружена Лагранжем во время работы над задачей трёх тел . Точки L 4 и L 5 называют треугольными (в отличие от коллинеарных).

Также точки называют троянскими : это название происходит от троянских астероидов Юпитера , которые являются самым ярким примером проявления этих точек. Они были названы в честь героев Троянской войны из «Илиады » Гомера , причём астероиды в точке L 4 получают имена греков, а в точке L 5 - защитников Трои ; поэтому их теперь так и называют «греками» (или «ахейцами ») и «троянцами».

Расстояния от центра масс системы до этих точек в координатной системе с центром координат в центре масс системы рассчитываются по следующим формулам:

r 4 = (R 2 β , 3 R 2) {\displaystyle r_{4}=\left({\frac {R}{2}}\beta ,{\frac {{\sqrt {3}}R}{2}}\right)} r 5 = (R 2 β , − 3 R 2) {\displaystyle r_{5}=\left({\frac {R}{2}}\beta ,-{\frac {{\sqrt {3}}R}{2}}\right)} β = M 1 − M 2 M 1 + M 2 {\displaystyle \beta ={\frac {M_{1}-M_{2}}{M_{1}+M_{2}}}} , R - расстояние между телами, M 1 - масса более массивного тела, M 2 - масса второго тела.

Примеры [ | ]

  • В 2010 году в системе Солнце - Земля в троянской точке L 4 обнаружен астероид . В L 5 пока не обнаружено троянских астероидов, но там наблюдается довольно большое скопление межпланетной пыли.
  • По некоторым наблюдениям, в точках L 4 и L 5 системы Земля - Луна находятся очень разрежённые скопления межпланетной пыли - облака Кордылевского .
  • В системе Солнце - Юпитер в окрестностях точек L 4 и L 5 находятся так называемые троянские астероиды . По состоянию на 21 октября 2010 известно около четырёх с половиной тысяч астероидов в точках L 4 и L 5 .
  • Троянские астероиды в точках L 4 и L 5 есть не только у Юпитера, но и у других планет-гигантов .
  • Другим интересным примером является спутник Сатурна Тефия , в точках L 4 и L 5 которой находятся два небольших спутника - Телесто и Калипсо . Ещё одна пара спутников известна в системе Сатурн - Диона : Елена в точке L 4 и Полидевк в точке L 5 . Тефия и Диона в сотни раз массивнее своих «подопечных», и гораздо легче Сатурна, что делает систему стабильной.
  • Один из сценариев модели ударного формирования Луны предполагает, что гипотетическая протопланета (планетезималь) Тейя , в результате столкновения которой с Землёй образовалась Луна , сформировалась в точке Лагранжа L 4 или L 5 системы Солнце - Земля .
  • Первоначально считалось, что в системе Kepler-223 две из четырёх планет обращаются вокруг своего солнца по одной орбите на расстоянии 60 градусов . Однако дальнейшие исследования показали, что данная система не содержит коорбитальных планет.

Равновесие в точках Лагранжа [ | ]

Тела, помещённые в коллинеарных точках Лагранжа, находятся в неустойчивом равновесии. Например, если объект в точке L 1 слегка смещается вдоль прямой, соединяющей два массивных тела, сила, притягивающая его к тому телу, к которому оно приближается, увеличивается, а сила притяжения со стороны другого тела, наоборот, уменьшается. В результате объект будет всё больше удаляться от положения равновесия.

Такая особенность поведения тел в окрестностях точки L 1 играет важную роль в тесных двойных звёздных системах . Полости Роша компонент таких систем соприкасаются в точке L 1 , поэтому, когда одна из звёзд-компаньонов в процессе эволюции заполняет свою полость Роша, вещество перетекает с одной звезды на другую именно через окрестности точки Лагранжа L 1 .

Несмотря на это, существуют стабильные замкнутые орбиты (во вращающейся системе координат) вокруг коллинеарных точек либрации, по крайней мере, в случае задачи трёх тел. Если на движение влияют и другие тела (как это происходит в Солнечной системе), вместо замкнутых орбит объект будет двигаться по квазипериодическим орбитам, имеющим форму фигур Лиссажу . Несмотря на неустойчивость такой орбиты, космический аппарат может оставаться на ней в течение длительного времени, затрачивая относительно небольшое количество топлива .

В отличие от коллинеарных точек либрации, в троянских точках обеспечивается устойчивое равновесие, если M 1 /M 2 > 24,96 . При смещении объекта возникают силы Кориолиса , которые искривляют траекторию, и объект движется по устойчивой орбите вокруг точки либрации .

Практическое применение [ | ]

Исследователи в области космонавтики давно уже обратили внимание на точки Лагранжа. Например, в точке L 1 системы Земля - Солнце удобно разместить космическую солнечную обсерваторию - она никогда не будет попадать в тень Земли, а значит, наблюдения могут вестись непрерывно. Точка L 2 подходит для космического телескопа - здесь Земля почти полностью заслоняет солнечный свет, да и сама не мешает наблюдениям, поскольку обращена к L 2 неосвещенной стороной. Точка L 1 системы Земля - Луна удобна для размещения ретрансляционной станции в период освоения Луны. Она будет находиться в зоне прямой видимости для большей части обращённого к Земле полушария Луны, а для связи с ней понадобятся передатчики в десятки раз менее мощные, чем для связи с Землёй.

В настоящее время несколько космических аппаратов , в первую очередь, астрофизических обсерваторий, размещены или планируются к размещению в различных точках Лагранжа Солнечной системы :

Точка L 1 системы Земля-Солнце :

Точка L 2 системы Земля-Солнце :

Другие точки Лагранжа :

Упоминание в культуре [ | ]

Точки Лагранжа довольно популярны в научно-фантастических произведениях, посвящённых освоению космоса. Авторы часто помещают в них обитаемые или автоматические станции - см., например, «Возвращение к звёздам » Эдмонда Гамильтона , «Глубина в небе » Вернора Винджа , «Нейромант » Уильяма Гибсона , «» Нила Стивенсона , телесериал «Вавилон-5 », компьютерные игры Borderlands 2 , .

Иногда в точки Лагранжа помещают и более интересные объекты - мусорные свалки («Единение разумов» Чарльза Шеффилда , «Нептунова арфа» Андрея Балабухи), инопланетные артефакты («Защитник» Ларри Нивена) и даже целые планеты («Планета, с которой не возвращаются» Пола Андерсона). Айзек Азимов предлагал отправлять в точки Лагранжа радиоактивные отходы («Вид с высоты»).

См. также [ | ]

Примечания [ | ]

Источники [ | ]

  1. Lagrange, Joseph-Louis. Tome 6, Chapitre II: Essai sur le problème des trois corps // Oeuvres de Lagrange : [фр. ] . - Gauthier-Villars, 1867–92. - P. 229–334.
  2. Расчёт положения точек Лагранжа
  3. Расчёт положения точек L 4 и L 5 (другой вариант)
  4. ISEE-3/ICE profile by NASA Solar System Exploration

Точки Лагра́нжа , или точки либра́ции (лат. librātiō «раскачивание»), или L-точки - точки в системе из двух массивных тел, в которых третье тело с пренебрежимо малой массой, на которое не действуют никакие другие силы, кроме гравитационных сил со стороны этих двух массивных тел, может оставаться неподвижным относительно этих тел.

Задача n тел - задача о движении n тел, взаимно притягивающихся согласно закону всемирного тяготения. Задача двух тел при движении тела малой массы вокруг тела большой массы, размером и движением которого можно пренебречь (задача Кеплера ), описывается законами Кеплера. Задача трех тел в общем виде решается в настоящее время только методами численного моделирования.

Более точно, точки Лагранжа представляют собой частный случай при решении т. н. ограниченной задачи трёх тел - когда орбиты всех тел являются круговыми и масса одного из них намного меньше массы любого из двух других. В этом случае можно считать, что два массивных тела обращаются вокруг их общего центра масс с постоянной угловой скоростью. В пространстве вокруг них существуют пять точек, в которых третье тело с пренебрежимо малой массой может оставаться неподвижным во вращающейся системе отсчёта, связанной с массивными телами. В этих точках гравитационные силы, действующие на малое тело, уравновешиваются центробежной силой.

Точки Лагранжа получили своё название в честь математика Жозефа Луи Лагранжа, который первым в 1772 году обнаружил это явление.

Расположение точек Лагранжа

Точки Лагранжа обозначают заглавной латинской буквой L с числовым индексом от 1 до 5.

Все точки Лагранжа лежат в плоскости орбит массивных тел. Первые три точки расположены на линии, проходящей через оба массивных тела. Эти точки Лагранжа называются коллинеарными и обозначаются L 1 , L 2 и L 3 .

L 1 находится между двумя телами системы, ближе к менее массивному телу, L 2 - снаружи, за менее массивным телом и L 3 - за более массивным. Расстояния от центра масс системы до этих точек в первом приближении по α рассчитываются по следующим формулам:

R - расстояние между телами, M 1 - масса более массивного тела, M 2 - масса второго тела.

Если M 2 много меньше M 1 , точки L 1 и L 2 находятся примерно на равном расстоянии от тела M 2:

Ещё две точки (L 4 и L 5) расположены в вершинах равносторонних треугольников с основанием, совпадающим с отрезком, соединяющим два массивных тела. Если масса одного из этих тел много меньше массы другого, точки L 4 и L 5 расположены на орбите менее массивного тела, на 60° впереди и позади него. Эти точки называют треугольными или троянскими . Точки L 4 и L 5 принимаются во внимание, если отношение масс системы более чем 1/25.

При нахождении частицы в точках L 1 , L 2 , L 3 система неустойчива, в точках L 4 , L 5 - устойчива; то есть, в случае слабого внешнего возмущения при нахождении частицы в L 4 или L 5 частица будет стремиться вернуться в точку Лагранжа (совершать около нее колебательное движение), при нахождении в точках L 1 , L 2 или L 3 будет стремиться уйти от точки Лагранжа.

Расстояния от центра масс системы до этих точек в координатной системе с центром координат в центре масс системы рассчитываются по следующим формулам:


Примеры точки L 2 в Солнечной системе:

  • В системе Солнце-Земля - 1 500 000 км от Земли
  • В системе Земля-Луна - 61 500 км от Луны

Равновесие в точках Лагранжа

Тела, помещённые в коллинеарных точках Лагранжа, находятся в неустойчивом равновесии. Например, если объект в точке L 1 слегка смещается вдоль прямой, соединяющей два массивных тела, сила, притягивающая его к тому телу, к которому оно приближается, увеличивается, а сила притяжения со стороны другого тела, наоборот, уменьшается. В результате объект будет всё больше удаляться от положения равновесия.

Такая особенность поведения тел в окрестностях точки L 1 играет важную роль в тесных двойных звёздных системах. Полости Роша компонент таких систем соприкасаются в точке L 1 , поэтому, когда одна из звёзд-компаньонов в процессе эволюции заполняет свою полость Роша, вещество перетекает с одной звезды на другую именно через точку Лагранжа L 1 .

Несмотря на это, существуют стабильные замкнутые орбиты (во вращающейся системе координат) вокруг коллинеарных точек либрации, по крайней мере, в случае задачи трёх тел. Если на движение влияют и другие тела (как это происходит в Солнечной системе), вместо замкнутых орбит объект будет двигаться по квазипериодическим орбитам, имеющим форму фигур Лиссажу. Несмотря на неустойчивость такой орбиты, космический аппарат может оставаться на ней в течение длительного времени, затрачивая относительно небольшое количество топлива.

В отличие от коллинеарных точек либрации, в троянских точках обеспечивается устойчивое равновесие, если M 1 /M 2 > 24,96. При смещении объекта возникают силы Кориолиса, которые искривляют траекторию и объект движется по устойчивой орбите вокруг точки либрации.


Изображение двойной звезды Мира (омикрон Кита), сделанное космическим телескопом Хаббл в ультрафиолетовом диапазоне. На фотографии виден поток материи, направленный от основного компонента - красного гиганта - к компаньону - белому карлику. Массообмен осуществляется через окрестности точки L1

Объекты Солнечной системы в точках Лагранжа

В 1772 году, выведя все это математически, Лагранж как бы предсказал нахождение астероидов (первый астероид, Церера, был открыт в 1801 г.) в точках L 4 и L 5 Юпитера (первый троянский астероид - так были названы подобные астероиды, - Ахиллес, № 588, был открыт Максом Вольфом в 1906 году). Точки L 4 и L 5 называются также "троянские точки" .

В системе Солнце - Юпитер в окрестностях точек L 4 и L 5 также имеются троянские астероиды. Сейчас известно более сотни астероидов в точках L 4 и L 5 . Предположительное число троянских астероидов - 2-3 тысячи. В системе Солнце-Юпитер только две точки Лагранжа - L 4 и L 5 , других фактически нет из-за Сатурна. Ахиллес (588), Гектор (624), Нестор, Агамнемон, Одиссей, Аякс, Антилох, Диомед, Менелай и др. - на 60° впереди; Патрокл (617), Приам, Эней, Антиф, Троил и др. - на 60° позади. Не все троянские астероиды находятся строго в точках Лагранжа - под троянскими астероидами понимаются и астероиды, совершающие колебательные движения около точек Лагранжа (описанные троянцы отстоят по орбите от Юпитера от 40° до 70°).

Двенадцатый спутник Сатурна расположен в точке Лагранжа орбиты Дионы (четвертого спутника Сатурна) - на 60° впереди. Тринадцатый и Четырнадцатый спутники Сатурна расположены в точках Лагранжа орбиты Тетис (третьего спутника Сатурна) - на 60° впереди и после.

В системе Сатурн - Тефия в точках L 4 и L 5 находятся два небольших спутника - Телесто и Калипсо. Ещё одна пара спутников известна в системе Сатурн - Диона: Елена в точке L 4 и Полидевк в точке L 5 . Тефия и Диона в сотни раз массивнее своих «подопечных», и гораздо легче Сатурна, что делает систему стабильной.

По некоторым наблюдениям, в точках L 4 и L 5 системы Земля - Луна находятся очень разрежённые скопления межпланетной пыли - облака Кордылевского. В системе Земля-Луна пять точек Лагранжа, пригодными для создания большой обитаемой станции являются точки L 4 и L 5 - на 60° впереди и позади Луны (из-за устойчивости состояния системы в этих точках).

Предполагается наличие астероидов в точках Лагранжа орбиты Марса.

Один из сценариев теории гигантского столкновения предполагает, что гипотетическая протопланета (планетезималь) Тейя, в результате столкновения которой с Землёй образовалась Луна, сформировалась в точке Лагранжа L 4 или L 5 системы Солнце - Земля.

В августе 2010 г. учёным удалось обнаружить .

Практическое применение

Исследователи в области космонавтики давно уже обратили внимание на точки Лагранжа. Например, в точке L 1 системы Земля-Солнце удобно разместить космическую солнечную обсерваторию - она никогда не будет попадать в тень Земли, а значит наблюдения могут вестись непрерывно. Точка L 2 подходит для космического телескопа - здесь Земля почти полностью заслоняет солнечный свет, да и сама не мешает наблюдениям, поскольку обращена к L 2 неосвещенной стороной. Точка L 1 системы Земля-Луна удобна для размещения ретрансляционной станции в период освоения Луны. Она будет находиться в зоне прямой видимости для большей части обращенного к Земле полушария Луны, а для связи с ней понадобятся передатчики в десятки раз менее мощные, чем для связи с Землей.

В настоящее время несколько космических аппаратов, в первую очередь, астрофизических обсерваторий, размещены в различных точках Лагранжа Солнечной системы:

  • SOHO (англ. Solar and Heliospheric Observatory , «Солнечная и гелиосферная обсерватория») находится на орбите в точке L 1 между Землёй и Солнцем.
  • WMAP (англ. Wilkinson Microwave Anisotropy Probe ), изучающий реликтовое излучение - в точке L 2 за орбитой Земли.
  • Advanced Composition Explorer - в точке L 1 системы Земля-Солнце.
  • в сентябре-октябре 2009 года два аппарата STEREO совершат транзит через точки L 4 и L 5 .
  • Телескоп «Гершель» и телескоп «Планк», запущенные 14 мая 2009 года, находятся в точке L 2 системы Земля-Солнце.
  • Космический телескоп Джеймса Вебба, идущий на смену телескопу Хаббла, планируют разместить в точке L 2 системы Земля-Солнце. Запуск планируется на 2013 год.
  • JIMO (англ. Jupiter Icy Moons Orbiter ) - проект исследования лун Юпитера, планировавшийся NASA на 2017 год, но отменённый в 2005 году из-за недостатка финансирования, должен был активно использовать систему точек Лагранжа для перехода от одной луны к другой с минимальными затратами топлива. Этот маневр получил название «лестница Лагранжа».

Упоминание в научной фантастике

В научной фантастике точки Лагранжа используются в основном для размещения обитаемых станций. На такой станции, например, происходит действие в трилогии Мака Рейнолдса, дописанной Дином Ингом - "Лагранж-5" (M. Reynolds. Lagrange Five , 1979 ), "Лагранжийцы" (M. Reynolds, D. Ing. Lagrangists , 1983 ), "Беспорядки в Лагранжии" (M. Reynolds, D. Ing. Chaos in Lagrangia , 1984 ) (которая является "продолжением" рассказа Мака Рейнолдса "Город-спутник" ). В романе Бена Бовы "Колония" (Ben Bova. Colony , 1978 ) точка L 4 была выбрана для обитаемой станции исходя из большей патриотичности географических названий обращенной к ней стороны Луны. Герой романа Джона Стица "Банк памяти" (J. Stith. Memory Bank , 1986 ) с потерей памяти обнаруживает себя на станции в L 5 . Юмористический роман Эда Нэха "Райский заговор" (Ed Naha. Paradise Plot , 1980 ) посвящен жизни на станции в L 5 (как и его продолжение - "Эпидемия самоубийств" [The Suicide Plague , 1982 ]). В романе Гарри Гаррисона "Возвращение к звездам" (Harry Harrison. Starworld , 1981 ) в точках L 4 и L 5 находятся колонии, состоящие из множества обитаемых станций.

В романе Данкана Лунана "Человек и звезды" (Duncan Lunan. Man and the Stars , 1974 ) залетевшая в Солнечную систему автоматическая станция чужих выбрала для парковки точку Лагранжа системы Земля-Луна.

В романе Ларри Нивена "Защитник" (L. Niven. Protector , 1973 ) первый контакт с "защитником" состоялся в лагранжевой точке орбиты Урана, колонии людей расположены в лагранжевых точках Юпитера, а в романе "Дар с Земли" этого же автора (A Gift from Earth , 1968 ) в троянской точке Нептуна расположена обсерватория.

В романе Ларри Нивена и Джерри Пурнелла "Мошка в зенице господней" (L. Niven, J. Pournell. A Mote in the God"s Eye , 1974 ) в системе мошкитов троянские точки газового гиганта (аналога Юпитера) плотно заселены, а все астероиды системы согнаны сюда для безопасности полетов по остальному пространству.

В романе Чарльза Шеффилда "Единение разумов" (Ch. Sheffield. The Nimrod Hunt , 1986 ; rev. ==The Mind Pool , 1993 ) следующая в 60° за Юпитером точка используется цивилизацией людей как свалка.

В рассказе Ларри Нивена "Реликт Империи" (L. Niven.A Relic of Empire, 1966) в точке Лагранжа двойной звездной системы находится планета. В романе Пола Андерсона "Планета, с которой не возвращаются" (P. Anderson. Planet of No Return , 1956 ) в системе двойной звезды в одной троянской точке находится двойная планета, в другой - астероиды. Айзек Азимов предлагал в точки Лагранжа отправлять радиоактивные отходы («Вид с высоты»).

Точки Лагранжа получили свое название в честь известного математика восемнадцатого века, который описал понятие Проблемы трех тел в своем труде 1772 года. Еще эти поинты называют лагранжевыми точками, а также точками либрации.

Но что такое точка Лагранжа с научной, не исторической точки зрения?

Лагранжевая точка — это некое место в пространстве, где объединенные силы тяжести двух довольно больших тел, к примеру, Земли и Солнца, Земли и Луны, равны центробежной силе, ощущаемой куда более маленьким третьим телом. В результате взаимодействия всех этих тел создается точка равновесия, где космический летательный аппарат может припарковаться и вести свои наблюдения.

Мы знаем о пяти таких точках. Три из них расположены вдоль линии, которая соединяет два больших объекта. Если брать соединение Земли с Солнцем, то первая точка L1 лежит как раз между ними. Расстояние от Земли до нее составляет один миллион миль. С этой точки всегда открыт вид на Солнце. Она на сегодня полностью захвачена «глазами» SOHO — обсерватории Солнца и Гелиосферы, а также обсерватории Климата глубокого Космоса.

Есть еще L2, которая находится в миллионе миль от Земли, как и ее сестра. Однако в противоположном от Солнца направлении. В данной точке с Землей, Солнце и Луной позади нее космический корабль может получить идеальное видение глубокого космоса.

Сегодня ученые измеряют в этой области космическое фоновое излучение, которое возникло в результате Большого взрыва. Планируется в 2018 переместить в этот регион и космический телескоп Джеймса Вебба.

Другая точка Лагранжа — L3 — находится в противоположном от Земли направлении. Она всегда лежит за Солнцем и скрыта на веки вечные. Кстати, большое число научной фантастики рассказывало миру о некой тайной планете Х, как раз находящейся в данной точке. Появился даже голливудский фильм Человек с планеты Х.

Однако стоит заметить, что все три точки нестабильны. У них неустойчивое равновесие. Иными словами, если космический корабль дрейфовал бы в сторону или от Земли, то он неминуемо упал бы либо на Солнце, либо на нашу планету. То есть он был бы в роли тележки, находящейся на острие очень крутого холма. Так что кораблям придется постоянно вносить корректировки, чтобы не случилось трагедии.

Хорошо, что есть более стабильные точки — L4, L5. Их стабильность сравнивается с мячом в большой миске. Расположены эти точки вдоль земной орбиты на шестьдесят градусов позади и впереди нашего дома. Таким образом образуется два равносторонних треугольника, у которых в виде вершин выступают большие массы, к примеру, Земля или Солнце.

Поскольку эти точки стабильны, в их области постоянно накапливаются космическая пыль с астероидами. Причем астероиды называются троянскими, так как названы следующими именами: Агамемнон, Ахилл, Гектор. Находятся они между Солнцем и Юпитером. Как говорят в NASA, существуют тысячи подобных астероидов, к которым относится и известный троянец 2010 TK7.

Считается, что L4, L5 — великолепно подходят для организации там колоний. Особенно из-за того, что они довольно близко к Земному шару.

Привлекательность точек Лагранжа

Вдали от солнечного тепла корабли в точках Лагранжа L1 и 2 могут быть настолько чувствительны, чтобы использовать инфракрасные лучи, исходящие от астероидов. Причем в данном случае не понадобилось бы охлаждение корпуса. Эти инфракрасные сигналы можно применять как направляющие направлений, избегая пути к Солнцу. Также у этих точек довольно высокая пропускная способность. Скорость связи гораздо более высокая, чем при использовании Ка- диапазона. Ведь если корабль находится на гелиоцентрической орбите (вокруг Солнца), то его слишком большая удаленность от Земли плохо скажется на скорости передачи данных.

В системе Земля-Луна первые три точки либрации находятся на вращающейся линии, соединяющей Землю и Луну: точка лежит между планетами, вторая точка находится за Луной, а третья коллинеарная точка расположена с обратной стороны Земли по отношению к Луне. Остальные две точки либрации и находятся с двух сторон вне вращающейся линии.

Пять точек равновесия, известные как точки Лагранжа или точки либрации , приведены на рис. 3. В них комбинированные гравитационные силы от первого и второго тела точно компенсируются центростремительным ускорением третьего тела. Такие точки позволяют третьему телу сохранять орбитальный период, равный орбитальным периодам первого и второго тела около их совместного центра масс.

Рис. 3.Пять точек либрации в системе Земля-Луна.

Точки, и являются неустойчивыми. Так как, если объект, помещенный в коллинеарную точку Лагранжа, слегка смещается вдоль прямой, соединяющей Землю и Луну, то сила, притягивающая объект к тому телу, к которому он приближается, увеличивается, а сила притяжения со стороны другого тела, наоборот, уменьшается. В результате объект будет все больше удалятся от положения равновесия.

Однако существуют стабильные замкнутые квазипериодические и периодические орбиты, такие как Лиссажу и гало-орбиты , которые колеблются около этих точек. То есть космический аппарата, совершающий движение по гало-орбите, будет оставаться на ней в течение длительного времени (рис.4).

Рис. 4. Гало-орбиты в системе Земля-Луна.

Объект, такой как космический аппарат, который смещен от точки либрации, будет колебаться вокруг точки с периодом определенным тем, насколько далеко он смещается в Y и Z направлениях (рис.5). Параметр ф является углом, определяющим положение космического аппарата на заданной гало-орбите и аналогичен истинной аномалии при полете по эллиптической орбите. Он измеряется в положительном направлении от оси +Z около оси +X от 0 ? до 360 ?.

Рис 5.

Среди пяти точек либрации системы Земля-Луна более актуальными для исследования человеком космического пространства являются две, находящиеся ближе всего к Луне - и. Они расположены около ближней и дальней сторон Луны соответственно, если смотреть с Земли. Однако лучше исследовать обратную сторону Луны, которая является одним из приоритетных мест для исследования космогонии и истории Солнечной системы. Луна защищает поверхность на её обратной стороне от наземных радиошумов, что облегчает изучение низкочастотных сигналов (ниже 100 МГц).

Точка либрации является идеальным местом для строительства орбитальных космических обсерваторий и телескопов. Поскольку объект в точке способен длительное время сохранять свою ориентацию относительно Солнца и Земли, производить его экранирование и калибровку становится гораздо проще. Точка в системе Земля-Луна может быть использована для обеспечения спутниковой связи с объектами на обратной стороне Луны, а также быть удобным местом для размещения заправочной станции для обеспечения грузопотока между Землёй и Луной.

Таким образом, в данной работе рассматривается космический аппарат на лунной поверхности, находящейся ближе к северу (диапазон по широте равен от 60? до 90?), с которого ведется наблюдение за объектом, совершающим движение по гало-орбите в точке либрации (рис. 6).

Рис. 6. Космический аппарат в точке либрации.

> Точки Лагранжа

Как выглядят и где искать точки Лагранжа в космосе: история обнаружения, система Земля и Луна, 5 L-точек системы двух массивных тел, влияние гравитации.

Будем откровенны: мы застряли на Земле. Стоит поблагодарить гравитацию за то, что нас не выкинуло в космическое пространство и мы можем ходить по поверхности. Но чтобы вырваться, приходится прикладывать огромное количество энергии.

Однако, во Вселенной есть определенные регионы, где умная система сбалансировала гравитационное влияние. При правильном подходе это можно использовать для более продуктивного и быстрого освоения пространства.

Эти места называют точками Лагранжа (L-точки). Наименование получили от Жозефа Луи Лагранжа, который описал их в 1772 году. Фактически, ему удалось расширить математику Леонарда Ейлера. Ученый первым открыл три таких точки, а Лагранж заявил о следующих двух.

Точки Лагранжа: О чем идет речь?

Когда вы располагаете двумя массивными объектами (например, Солнце и Земля), то их гравитационный контакт замечательно сбалансирован в конкретных 5 участках. В каждом из них можно расположить спутник, который будет удерживаться на месте при минимальных усилиях.

Наиболее примечательная – первая точка Лагранжа L1, сбалансированная между гравитационным притяжением двух объектов. Например, можно установить спутник над поверхностью Луны. Земная тяжесть вталкивает его в Луну, но сила спутника также сопротивляется. Так что аппарату не придется тратить много топлива. Важно понимать, что эта точка есть между всеми объектами.

L2 находится на одной линии с массой, но с другой стороны. Почему же объединенная гравитация не притягивает спутник к Земле? Все дело в орбитальных траекториях. Спутник в точке L2 расположится на более высокой орбите и отстает от Земли, так как перемещается вокруг звезды медленнее. Но земная гравитация подталкивает его и помогает закрепиться на месте.

L3 искать нужно на противоположной стороне от системы. Гравитация между объектами стабилизируется и аппарат с легкостью маневрирует. Такой спутник всегда закрывался бы Солнцем. Стоит отметить, что три описанные точки не считаются устойчивыми, потому любой спутник рано или поздно отклонится. Так что без рабочих двигателей там делать нечего.

Есть также L4 и L5, расположенные спереди и сзади нижнего объекта. Между массами создается равносторонний треугольник, одной из сторон которого будет L4. Если перевернете вверх ногами, то получите L5.

Последние две точки считают стабильными. Это подтверждают найденные астероиды на крупных планетах, вроде Юпитера. Это троянцы, попавшие в гравитационную ловушку между гравитациями Солнца и Юпитера.

Как использовать такие места? Важно понимать, что существует множество разновидностей космического освоения. Например, в точках Земля-Солнце и Земля-Луна уже расположены спутники.

Солнце-Земля L1 – прекрасное место для проживания солнечного телескопа. Аппарат максимально подошел к звезде, но не теряет связи с родной планетой.

В точке L2 планируют разместить будущий телескоп Джеймса Уэбба (в 1.5 миллионах км от нас).

Земля-Луна L1 – отличная точка для лунной станции по дозаправке, которая позволяет экономить на доставке топлива.

Наиболее фантастической идеей будет желание поставить в L4 и L5 космическую станцию Остров III, потому что там она была бы абсолютной стабильной.

Давайте все же поблагодарим гравитацию и ее диковинное взаимодействие с другими объектами. Ведь это позволяет расширить способы освоения пространства.