В электрохимической ячейке (гальваническом элементе) электроны, остающиеся после образования ионов, удаляются через металлический провод и рекомбинируют с ионами другого вида. Т.е.заряд во внешней цепи переносится электронами, а внутри ячейки, через электролит, в который погружены металлические электроды, ионами. Таким образом получается замкнутая электрическая цепь.

Разность потенциалов, измеряемая в электрохимической ячейке, o бъясняется различием в способности каждого из металлов отдавать электроны. Каждый электрод имеет собственный потенциал, каждая система электрод-электролит представляет собой полуэлемент, а любые два полуэлемента образуют электрохимическую ячейку. Потенциал одного электрода называют потенциалом полуэлемента, он определят способность электрода отдавать электроны. Очевидно, что потенциал каждого полуэлемента не зависит от наличия другого полуэлемента и его потенциала. Потенциал полуэлемента определяется концентрацией ионов в электролите и температурой.

В качестве «нулевого» полуэлемента был выбран водород, т.е. считается, что для него при добавлении или удалении электрона с образованием иона никакой работы не совершается. «Нулевое» значение потенциала необходимо для понимания относительной способности каждого из двух полуэлементов ячейки отдавать и принимать электроны.

Потенциалы полуэлементов, измеряемые относительно водородного электрода, называются водородной шкалой. Если термодинамическая склонность отдавать электроны в одной половине электрохимической ячейки выше, чем в другой, то потенциал первою полуэлемента выше, чем потенциал второго. Под действием разности потенциалов будет происходить переток электронов. При сочетании двух металлов можно выяснить возникающую между ними разность потенциалов и направление потока электронов.

Электроположительный металл обладает более высокой способностью принимать электроны, поэтому он будет катодным или благородным. С другой стороны находятся электроотрицательные металлы, которые способны самопроизвольно отдавать электроны. Эти металлы являются реакционноспособными, а, следовательно, анодными:

- 0 +

Al Mn Zn Fe Sn Pb H 2 Cu Ag Au


Например, Cu отдает электроны легче Ag , но хуже Fe . В присутствии медного электрода ноны серебра начнут соединяться с электронами, приводя к образованию ионов меди и осаждению металлического серебра:

2 Ag + + Cu Cu 2+ + 2 Ag

Однако та же самая медь менее реакционноспособна, чем железо. При контакте металлического железа с нонами меди та будет осаждаться, а железо переходить в раствор:

Fe + Cu 2+ Fe 2+ + Cu .

Можно говорить, что медь является катодным металлом относительно железа и анодным - относительно серебра.

Стандартным электродным потенциалом считается потенциал полуэлемента из полностью отожженого чистого металла в качестве электрода в контакте с ионами при 25 0 С. В этих измерениях водородный электрод выступает в роли электрода сравнения. В случае двухвалентного металла можно записать реакцию, протекающую в соответствующей электро-химической ячейке:

М + 2Н + М 2+ + Н 2 .

Если упорядочить металлы по убыванию их стандартных электродных потенциалов, то получается так называемый электрохимический ряд напряжений металлов (табл. 1).

Таблица 1. Электрохимический ряд напряжений металлов

Равновесие металл-ионы (единичной активности)

Электродный потенциал относительно водородного электрода при 25°С, В (восстановительный потенциал)

Благородные

или катодные

Au-Au 3+

1,498

Pt-Pt 2 +

Pd-Pd 2 +

0,987

Ag-Ag +

0,799

Hg-Hg 2+

0,788

Cu-Cu 2+

0,337

Н 2 -Н +

Pb-Pb 2 +

0,126

Sn-Sn 2+

0,140

Ni-Ni 2+

0,236

Co-Co 2+

0,250

Cd-Cd 2+

0,403

Fe-Fe 2+

0,444

Cr-Cr 2+

0,744

Zn-Zn 2+

0,763

Активные
или анодные

Al-Al 2 +

1,662

Mg-Mg 2 +

2,363

Na-Na +

2,714

K-K +

2,925

Например, в гальваническом элементе медь-цинк возникает поток электронов от цинка к меди. Медный электрод является в этой схеме положительным полюсом, а цинковый - отрицательным. Более реакционноспособный цинк теряет электроны:

Zn Zn 2+ + 2е - ; E °=+0,763 В.

Медь же является менее реакционноспособной и принимает электроны от цинка:

Cu 2+ + 2е - Cu ; E °=+0,337 В.

Напряжение на соединяющем электроды металлическом проводе составит:

0,763 В + 0,337 В = 1,1 В.

Таблица 2. Стационарные потенциалы некоторых металлов и сплавов в морской воде по отношению к нормальному водородному электроду ( ГОСТ 9.005-72).

Металл

Стационарный потенциал, В

Металл

Стационарный потенциал, В

Магний

1,45

Никель (активное co стояние)

0,12

Магниевый сплав (6 % А l , 3 % Zn , 0,5 % Mn )

1,20

Медные сплавы ЛМцЖ-55 3-1

0,12

Цинк

0,80

Латунь (30 % Zn )

0,11

Алюминиевый сплав (10 % Mn )

0,74

Бронза (5-10 % Al )

0,10

Алюминиевый сплав (10 % Zn )

0,70

Томпак (5-10 % Zn )

0,08

Алюминиевый сплав К48-1

0,660

Медь

0,08

Алюминиевый сплав В48-4

0,650

Купроникель (30 % Ni )

0,02

Алюминиевый сплав АМг5

0,550

Бронза «Нева»

0,01

Алюминиевый сплав АМг61

0,540

Бронза Бр. АЖН 9-4-4

0,02

Алюминий

0,53

Нержавеющая сталь Х13 (пассивное состояние)

0,03

Кадмий

0,52

Никель (пассивное состояние)

0,05

Дюралюминий и алюминиевый сплав АМг6

0,50

Нержавеющая сталь Х17 (пассивное состояние)

0,10

Железо

0,50

Титан технический

0,10

Сталь 45Г17Ю3

0,47

Серебро

0,12

Сталь Ст4С

0,46

Нержавеющая сталь 1Х14НД

0,12

Сталь СХЛ4

0,45

Титан йодистый

0,15

Сталь типа АК и углеродистая сталь

0,40

Нержавеющая сталь Х18Н9 (пассивное состояние) и ОХ17Н7Ю

0,17

Серый чугун

0,36

Монель-металл

0,17

Нержавеющие стали Х13 и Х17 (активное состояние)

0,32

Нержавеющая сталь Х18Н12М3 (пассивное состояние)

0,20

Никельмедистый чугун (12-15 % Ni , 5-7 % Си)

0,30

Нержавеющая сталь Х18Н10Т

0,25

Свинец

0,30

Платина

0,40

Олово

0,25

Примечание . Указанные числовые значения потенциалов н порядок металлов в ряду могут изменяться в различной степени в зависимости от чистоты металлов, состава морской воды, степени аэрации и состояния поверхности металлов.

Металлы, легко вступающие в реакции, называются активными металлами. К ним относятся щелочные, щелочноземельные металлы и алюминий.

Положение в таблице Менделеева

Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

Рис. 1. Активные металлы в таблице Менделеева.

Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

Наиболее активными считаются щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

К щелочноземельным металлам относятся:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

Рис. 2. Электрохимический ряд напряжений металлов.

К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

Свойства

Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

Основные химические свойства металлов представлены в таблице.

Реакция

Уравнение

Исключение

Щелочные металлы самовозгораются на воздухе, взаимодействуя с кислородом

K + O 2 → KO 2

Литий реагирует с кислородом только при высокой температуре

Щелочноземельные металлы и алюминий на воздухе образуют оксидные плёнки, а при нагревании самовозгораются

2Ca + O 2 → 2CaO

Реагируют с простыми веществами, образуя соли

Ca + Br 2 → CaBr 2 ;
- 2Al + 3S → Al 2 S 3

Алюминий не вступает в реакцию с водородом

Бурно реагируют с водой, образуя щёлочи и водород


- Ca + 2H 2 O → Ca(OH) 2 + H 2

Реакция с литием протекает медленно. Алюминий реагирует с водой только после удаления оксидной плёнки

Реагируют с кислотами, образуя соли

Ca + 2HCl → CaCl 2 + H 2 ;

2K + 2HMnO 4 → 2KMnO 4 + H 2

Взаимодействуют с растворами солей, сначала реагируя с водой, а затем с солью

2Na + CuCl 2 + 2H 2 O:

2Na + 2H 2 O → 2NaOH + H 2 ;
- 2NaOH + CuCl 2 → Cu(OH) 2 ↓ + 2NaCl

Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей - минералов, горных пород.

Рис. 3. Минералы и чистые металлы.

Что мы узнали?

К активным металлам относятся элементы I и II групп - щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома - немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия - высокие температуры, разрушение оксидной плёнки.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 334.

Какую информацию можно получить из ряда напряжений?

Ряд напряжений металлов широко используется в неорганической химии. В частности, результаты многих реакций и даже возможность их осуществления зависят от положения некоторого металла в ЭРН. Обсудим этот вопрос подробнее.

Взаимодействие металлов с кислотами

Металлы, находящиеся в ряду напряжений левее водорода, реагируют с кислотами - неокислителями. Металлы, расположенные в ЭРН правее Н, взаимодействуют только с кислотами - окислителями (в частности, с HNO 3 и концентрированной H 2 SO 4).

Пример 1 . Цинк расположен в ЭРН левее водорода, следовательно, способен реагировать практически со всеми кислотами:

Zn + 2HCl = ZnCl 2 + H 2

Zn + H 2 SO 4 = ZnSO 4 + H 2

Пример 2 . Медь находится в ЭРН правее Н; данный металл не реагирует с "обычными" кислотами (HCl, H 3 PO 4 , HBr, органические кислоты), однако вступает во взаимодействие с кислотами-окислителями (азотная, концентрированная серная):

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

Cu + 2H 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2H 2 O

Обращаю внимание на важный момент: при взаимодействии металлов с кислотами-окислителями выделяется не водород, а некоторые другие соединения. Подробнее об этом можно почитать !

Взаимодействие металлов с водой

Металлы, расположенные в ряду напряжений левее Mg, легко реагируют с водой уже при комнатной температуре с выделением водорода и образованием раствора щелочи.

Пример 3 . Натрий, калий, кальций легко растворяются в воде с образованием раствора щелочи:

2Na + 2H 2 O = 2NaOH + H 2

2K + 2H 2 O = 2KOH + H 2

Ca + 2H 2 O = Ca(OH) 2 + H 2

Металлы, расположенные в ряду напряжений от водорода до магния (включительно), в ряде случаев взаимодействуют с водой, но реакции требуют специфических условий. Например, алюминий и магний начинают взаимодействие с Н 2 О только после удаления оксидной пленки с поверхности металла. Железо не реагирует с водой при комнатной температуре, но взаимодействует с парами воды. Кобальт, никель, олово, свинец практически не взаимодействуют с H 2 O не только при комнатной температуре, но и при нагревании.

Металлы, расположенные в правой части ЭРН (серебро, золото, платина) не реагируют с водой ни при каких условиях.

Взаимодействие металлов с водными растворами солей

Речь пойдет о реакциях следующего типа:

металл (*) + соль металла (**) = металл (**) + соль металла (*)

Хотелось бы подчеркнуть, что звездочки обозначают в данном случае не степень окисления, не валентность металла, а просто позволяют различить металл № 1 и металл № 2.

Для осуществления подобной реакции необходимо одновременное выполнение трех условий:

  1. соли, участвующие в процессе, должны растворяться в воде (это легко проверить, пользуясь таблицей растворимости);
  2. металл (*) должен находиться в ряду напряжений левее металла (**);
  3. металл (*) не должен реагировать с водой (что тоже легко проверяется по ЭРН).

Пример 4 . Рассмотрим несколько реакций:

Zn + CuSO 4 = ZnSO 4 + Cu

K + Ni(NO 3) 2 ≠

Первая реакция легко осуществима, все перечисленные выше условия выполнены: сульфат меди растворим в воде, цинк находится в ЭРН левее меди, Zn не реагирует с водой.

Вторая реакция невозможна, т. к. не выполнено первое условие (сульфид меди (II) практически не растворяется в воде). Третья реакция неосуществима, поскольку свинец - менее активный металл, нежели железо (находится правее в ЭРН). Наконец, четвертый процесс НЕ приведет к осаждению никеля, поскольку калий реагирует с водой; образовавшийся гидроксид калия может вступить в реакцию с раствором соли, но это уже совершенно другой процесс.

Процесс термического распада нитратов

Напомню, что нитраты - это соли азотной кислоты. Все нитраты разлагаются при нагревании, но вот состав продуктов разложения может быть разным. Состав определяется положением металла в ряду напряжений.

Нитраты металлов, расположенных в ЭРН левее магния, при нагревании образуют соответствующий нитрит и кислород:

2KNO 3 = 2KNO 2 + O 2

В ходе термического разложения нитратов металлов, расположенных в ряду напряжений от Mg до Cu включительно, образуются оксид металла, NO 2 и кислород:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

Наконец, при разложении нитратов наименее активных металлов (расположенных в ЭРН правее меди) образуются металл, диоксид азота и кислород.

Ряд напряжений металлов – это ряд металлов расположенных по возрастанию их стандартного электродного потенциала (). Положение металла в ряду напряжений свидетельствует о его окислительно-восстановительных способностях по отношению к другим металлам и их катионам для реакций, протекающих в растворах электролитах, т. е. в реакциях с солями и основаниями. А также с неметаллами, если эти реакции протекают в водных растворах в частности к таким процессам относятся процессы коррозии металлов ().

В ряду напряжений:

1) Уменьшается восстановительная способность металлов.

2) Увеличивается окислительная способность. Как следствие этого металлы, стоящие в ряду напряжений до водорода вытесняют его из растворов кислот (не окислителей).

3) Металлы, стоящие в ряду левее (имеющие меньший потенциал) вытесняют металлы стоящие правее (имеющие больший потенциал) из растворов их солей.

4) Металлы, стоящие в ряду напряжений до Mg (имеющие ) вытесняют водород из воды.

Таким образом значение электродного потенциала определяет окислительно-восстановительные способности металлов по отношению друг к другу и по отношению к H и содержащие его катионы электролитам.

Измерение электродных потенциалов. Ряд стандартных электродных потенциалов, водородный электрод.

Абсолютное значение электродного потенциала измерить практически невозможно. В связи с этим электродный потенциал измеряется путем измерения ЭДС гальванического элемента составленного из исследуемого электрода и электрода потенциал, которого известен. Стандартный электродный потенциал определяется величиной ЭДС гальванического элемента, составленного из исследуемого электрода и стандартного водородного электрода, потенциал которого условно принимается равным нулю.

Стандартный водородный электрод – Это система, находящаяся при нормальных условиях, состоящая из губчатой пластины, в поры которой нагнетают водород , помещённую в одномоляльный раствор серной кислоты H 2 SO 4 с C(H +)=1моль/кг

Стандартизировать условия и воспроизводить потенциал такого электрода является сложной задачей, поэтому данный электрод используется в метеорологических целях. В лабораторной практике для измерения электродных потенциалов используют вспомогательные электроды.

Пример: каломельный электрод - Hg,HgCl/Cl - ;

хлор серебряный – Ag, AgCl/Cl - и т.д.

Потенциал этих электродов устойчиво воспроизводится, то есть сохраняет свое значение при хранении и эксплуатации.


Понятно, что ничего не понятно.

Разберем более подробно процессы, которые могут происходить при погружении металлической пластины в раствор соли того же металла, из которого изготовлена и сама пластина, которую, в подобных случаях называют электродом .

Возможны два варианта.

Вариант 1 . Электрод изготовлен из металла, являющегося активным восстановителем (ему не "жалко" отдавать свои электроны), пусть это будет, скажем, цинк.

После того, как цинковый электрод погружается в раствор, диполи воды, присутствующие в растворе, начинают притягивать к себе определенную часть атомов цинка, которые переходят в раствор в виде гидратированных ионов, но при этом оставляют свои электроны на поверхности электрода.

Me 0 +mH 2 O → Me n+ ·mH 2 O+ne - Me 0 → Me n+ +ne -

Постепенно на поверхности цинкового электрода накапливается все больше и больше "брошенных" отрицательных электронов, - цинковый электрод приобретает отрицательный заряд. Параллельно с этим процессом в растворе увеличивается количество положительно заряженных ионов цинка, которые покинули электрод. Катионы цинка начинают притягиваться отрицательно заряженным электродом, в результате чего на границе электрод-раствор образуется так называемый двойной электрический слой (ДЭС).

Вариант 2. Электрод изготовлен из металла, который является слабым восстановителем (ему "жалко" расставаться со своими электронами). Пускай роль такого металла играет медь. Таким образом, ионы меди, содержащиеся в растворе, являются сильными окислителями. При погружении медного электрода в раствор часть ионов меди начинает контактировать с поверхностью электрода и восстанавливается за счет свободных электронов, присутствующих в меди.

Me n+ +ne - → Me 0

Идет процесс, обратный Варианту 1. Постепенно все больше и больше катионов меди осаждаются на поверхности электрода. Восстанавливаясь, катионы заряжают медную пластину положительно, по мере увеличения заряда положительный медный электрод все больше и больше притягивает отрицательно заряженных ионов, таким образом, формируется двойной электрический слой, но обратной полярности, чем это было в Варианте 1.

Формируемая на границе электрод-раствор разность потенциалов, называется электродным потенциалом .

Измерить такой потенциал очень сложно. Чтобы выйти из трудного положения, решили брать не абсолютные значения, а относительные, при этом в качестве эталона решили взять потенциал водородного электрода, принятый равным нулю.

Потенциал конкретного металлического электрода зависит от природы металла, концентрации и температуры раствора.

Поскольку щелочные и щелочноземельные металлы в водных растворах реагируют с водой - их электродным потенциалы рассчитывают теоретически.

Все металлы принято располагать в порядке возрастания значения их стандартного электродного потенциала - такой ряд называется электрохимическим рядом напряжений металлов :

Что показывает электродный потенциал

Электродный потенциал отражает в численном значении способность металла отдавать свои электроны или восстанавливаться, говоря другими словами, отражает химическую активность металла.

Чем левее в электрохимическом ряду стоит металл (см. выше), тем он легче отдает свои электроны, т.е., является более активным, легче вступает в реакции с другими элементами.

Если брать крайности, то:

  • литий самый сильный восстановитель, а ион лития - самый слабый окислитель;
  • золото самый слабый восстановитель, а ион золота - самый сильный окислитель.

Следствия, вытекающие из электрохимического ряда напряжений металлов:

  • Металл вытесняет из солей все другие металлы, стоящее в ряду правее него (являющиеся более слабыми восстановителями);
  • Металлы, имеющие отрицательное значение электродного потенциала, т.е., стоящие левее водорода, вытесняют его из кислот;
  • Самые активные металлы, имеющие самые низкие значения электродного потенциала (это металлы от лития до натрия), в водных растворах в первую очередь реагируют с водой.

Следует обратить внимание, что положение металлов в Периодической таблице и положение этих же металлов в электрохимическом ряду напряжений немного отличаются. Данный факт объясняет тем, что значение электродного потенциала зависит не только от энергии, необходимой для отрыва электронов от изолированного атома, но сюда входит также еще и энергия, требуемая для разрушения кристаллической решетки + энергия, которая выделяется при гидратации ионов.