мистер Олимпия 17 августа 2015 в 13:46

Опыт Майкельсона-Морли

  • Физика

Опытом Майкельсона-Морли я заинтересовался еще во времена моей учебы в университете – давно это было. Здесь у меня подборка из интернета – несколько «нарезок» в сокращенном виде:

Специальная теория относительности была разработана Альбертом Эйнштейном и его предшественниками на основе, главным образом, опыта Майкельсона-Морли (1881, 1887 гг.), не выявившего эфирного дрейфа (ether drift) - эксперимента по определению скорости движения Земли относительно светоносной среды (эфира).

Суть опыта Майкельсона-Морли заключалась в том, что в интерферометре использовался расщепленный световой луч, который проходил прямой и обратный путь в продольном и поперечном направлениях по отношению к движению поверхности Земли. Результирующий пучок света, возвратившегося на полупрозрачное зеркало, позволял наблюдать интерференционную картину смещения интерференционных полос и выявлять малейшую десинхронизацию двух лучей - запаздывание одного луча относительно другого.

Этот опыт был проведён в конце XIX в и позднее, у разных экспериментаторов показав либо «нулевые» (или «отрицательные»), либо положительные результаты с определённым звёздным апексом. Различные специалисты, вплоть до нобелевских лауреатов, подвергают критике как саму постановку экспериментов, подобных опытам Майкельсона-Морли, так и полученные на их основе теоретические выкладки.

Это и не удивительно, ведь по результатам эксперимента Майкельсона–Морли была создана специальная теория относительности. Значение эксперимента действительно трудно переоценить, ибо он должен был подтвердить наличие светоносной среды – эфира, гипотезу которого после этого эксперимента релятивисты отвергли и приняли теорию относительности. И хотя отсутствие, согласно опытам Майкельсона-Морли, «эфирного ветра» еще не доказывало отсутствие эфира, релятивисты из своего позитивистского идеалистического понимания «простоты» научной концепции, решили от него избавиться. В то время позитивисты объявили субстанциональные понятия вроде «материи» пережитками метафизики.

Искушенный читатель понимает, что для обожествления идеи требуются совершенно иные качества психики, чем строгий научный подход. Механизмы генезиса и экспансии релятивизма ничем особенным не отличаются от аналогичных процессов зарождения и распространения, скажем, религиозных верований и мифов.

Я, признаюсь, когда интересовался этим опытом , никаких доказательств теории относительности в нем не нашел – мозги, наверное, устроены не так как у гениев. Речь там шла о попытках замера скорости света в направлениях вдоль и поперек движения поверхности Земли. Эта скорость, согласно интерпретации результатов замеров в опытах Майкельсона-Морли и их последователей, оказалась одинаковой, т.е. постоянной. Ну и что? Скорость звука в неподвижном воздухе тоже постоянна во всех направлениях – в стране слепых из этого факта могли бы тоже соорудить какую-то сногсшибательную теорию. Да и вообще, с какого перепугу скорость света не должна быть постоянной в пределах Земли. Разве инертная масса, которой обладают и частицы света, зависит от перемещения вдоль или поперек движению Земли, или есть хотя бы гипотеза на этот счет?

Семиков С.А. Доклад по дисциплине "История и методология науки " от 20.12.2008

Был мир земной кромешной тьмой окутан.
Да будет свет – и вот явился Ньютон.
Но Сатана недолго ждал реванша:
Пришёл Эйнштейн. И стало всё как раньше.

Что же привело к столь радикальному пересмотру классической механики? Началось всё в 1881 г. с опыта Майкельсона. В опыте делалась попытка установить скорость движения Земли в эфире – среде, в которой согласно электродинамике распространялся свет. Для этого сравнивали времена движения луча света в интерферометре Майкельсона-Морли вдоль и поперёк скорости движения Земли. Понятно, что скорость света в эфире вдоль и поперёк получилась бы разная и разными бы вышли времена движения. Но опыт обнаружил равенство времён, что говорило о ложности теории эфира и основанной на нём максвелловской электродинамики. Однако учёные уже настолько уверовали в электродинамику, что предпочли видоизменить механику, дабы подогнать результат опыта под электродинамику.

Четверостишие, приведенное выше, если не ошибаюсь, это две эпиграммы в переводе Самуила Маршака. Не имея возражений против воззрений автора доклада, я позволю себе придраться к фактору использования языка – раздел ведь относится к терминологии: раздел сайта я имею ввиду. Так вот, правильное использование языка предполагает, с моей точки зрению, и правильную интерпретацию сообщений, сооруженных посредством слов. А с этой точки зрения никакой такой скорости света или «равенства времен» в опыте Майкельсона-Морли не замерялось. Фиксировались лишь результаты интерференции волн, по которой судили о скорости света. При этом делалась масса произвольных, хотя и более-менее правдоподобных допущений. Допущений о том, что скорость света в прямом и обратном направлениях его движения одинакова; о том, что частота света в этих направлениях тоже одинакова; о том, что временем отражения света можно пренебречь; о том, что процесс взаимодействия прибора со световым лучом не вносит искажения в интерференцию, и прочая.

В моих примечаниях по поводу опыта Майкельсона-Морли так и было записано: Опыт обнаружил не «равенство времен», а лишь результат замеров, который, в частности, можно интерпретировать как равенство времен.

Теги: опыт Майкельсона-Морли, классическая механика

Опыт Майкельсона

Схема опыта Майкельсона-Гэля

О́пыты Ма́йкельсона - класс физических экспериментов, исследующих зависимость скорости распространения света от направления. В настоящее время (2011 год) точность опытов позволяет найти относительные отклонения изотропности скорости света в единицы 10 −16 , однако на этом уровне отклонения не найдены. Опыты Майкельсона являются эмпирической основой принципа инвариантности скорости света , входящего в общую теорию относительности (ОТО) и специальную теорию относительности (СТО) .

История

Предыстория

Теория распространения света, включающая в себя эфир, появилась в XVII веке. В 1727 году английский астроном Джеймсом Брэдли объяснил через неё аберрацию света . Эдуард Кеттелер и Т. Юнг несколько развили теорию эфира. В 1868 году Хук поставил опыт по проверке теории эфира на эффекте аберрации света от земного источника света. В 1871-1872 годах Эйри провёл серию точных опытов с астрономическим источником света, сделав из них вывод о том, что орбитальное движение Земли полностью увлекает эфир.

Эпоха Майкельсона

Впервые подобный опыт был поставлен Альбертом Майкельсоном на своём интерферометре в 1881 году , с целью измерения зависимости скорости света от движения Земли относительно эфира . Под эфиром тогда понималась среда, аналогичная объёмнораспределённой материи, в которой свет распространяется подобно звуковым колебаниям. Результат эксперимента по мнению Майкельсона был отрицательным - смещения полос не совпадают по фазе с теоретическими, а колебания этих смещений только немного меньше теоретических.

Опыты Миллера

По мнению профессора Дэйтона К. Миллера (Кейсовская школа прикладных наук): - «Можно полагать, что эксперимент лишь показал, что эфир в конкретной подвальной комнате увлекается в продольном направлении вместе с ней. Мы собираемся поэтому переместить аппарат на холм, чтобы посмотреть, не обнаружится ли там эффект» .

В марте 1921 г. методика и аппарат были несколько изменены и получен результат в 10 км/с «эфирного ветра». Результаты были тщательно проверены на предмет возможного устранения погрешностей, связанных с магнитострикцией и тепловым излучением. Направление вращение аппарата не оказывало влияния на результат эксперимента .

Более поздние исследования результатов, полученных Д. Миллером, показали, что флюктуации, наблюдавшиеся им и интерпретированные как наличие «эфирного ветра» являются следствием статистических ошибок и неучёта температурных эффектов .

Опыты Кеннеди

Доктор Рой Кеннеди (Калифорнийский технологический институт) после публикаций результатов опыта Морли-Миллера видоизменяет опыт с целью проверки. Интерферометр помещается в металлический герметичный корпус, заполненный гелием под давлением 1 атм. Используя приспособление, способное различить очень малые смещения интерференционной картины, стало возможным сократить размер плеч до 4 м. Использовался поляризованный свет с целью исключить насколько возможно рассеяние света на зеркалах. Точность опыта соответствовала смещению полос на 2·10 −3 их ширины. На этом аппарате скорость 10 км/с, полученная Миллером, давала бы сдвиг, соответствующий 8·10 −3 длины волны зелёного цвета, что в четыре раза больше наименьшего определяемого значения. Эксперимент проводился в лаборатории Норман Бридж, в помещении с постоянной температурой, в различное время дня. Для проверки зависимости скорости эфирного ветра от высоты местности опыты проводились также на Маунт Вилсон в здании обсерватории. Эффект оказался не превышающим 1 км/с для эфирного ветра .

Теперь я хотел бы сделать несколько замечаний по поводу эксперимента Миллера. Я считаю, что существует серьёзная проблема, связанная с эффектом, периодическим для полного оборота аппарата, и сброшенная со счетов Миллером, подчеркивающим значение эффекта полупериода, т. е. повторяющегося при полуобороте аппарата, и касающаяся вопроса об эфирном ветре. Во многих случаях эффект полного периода значительно больше эффекта полупериода. По Миллеру эффект полного периода зависит от ширины полос и будет нулевым для неопределенно широких полос.

Хотя Миллер утверждает, что он смог исключить этот эффект в значительной степени в своих замерах в Кливленде, и это можно легко объяснить в эксперименте, я хотел бы более четко понять причины этого. Говоря в данный момент как приверженец теории относительности, я должен утверждать, что такого эффекта вовсе не существует. Действительно, поворот аппарата в целом, включая источник света, не дает какого-либо сдвига с точки зрения теории относительности. Никакого эффекта не должно быть, когда Земля и аппарат находятся в покое. По Эйнштейну такое же отсутствие эффекта должно наблюдаться для движущейся Земли. Эффект полного периода, таким образом, находится в противоречии с теорией относительности и имеет большое значение. Если затем Миллер обнаружил систематические эффекты, существование которых нельзя отрицать, важно также узнать причину эффекта полного периода - Проф. Лоренц

Опыты Майкельсона и Гэля

В 1925 г. Майкельсоном и Гэлем у Клиринга в Иллинойсе на земле были уложены водопроводные трубы в виде прямоугольника. Диаметр труб 30 см. Трубы AF и DE направлены точно с запада на восток, EF, DA и CB - с севера на юг. DE=AF=613 м. EF=DA=CB=339.5 м. Одним общим насосом работающим в течение трех часов можно откачать воздух до давления 1 см ртутного столба. Чтобы обнаружить смещение Майкельсон сравнивает в поле зрительной трубы интерференционные полосы, получаемые при обегании большого и малого контура. Один пучок света шёл по часовой стрелке, другой против. Смещение полос, вызываемое вращением Земли, регистрировали в различные дни при полной перестановке зеркал и различными людьми. Всего было сделано 269 измерений. Теоретически предполагая эфир неподвижным, следует ожидать смещения полосы на 0,236±0,002. Обработка данных наблюдений дала смещение 0,230±0,005, таким образом подтвердив существование и величину эффекта Саньяка .

Таким образом, перед нами снова положительный эффект, сам по себе с поразительной точностью подтверждающий предположение о неувлекаемом эфире, отстающим при суточном вращении Земли. - С.И. Вавилов т. IV

Современные варианты


Wikimedia Foundation . 2010 .

Смотреть что такое "Опыт Майкельсона" в других словарях:

    Общий вид интерферометра в перспективе. Изображение из доклада А.Майкельсона по результатам его экспериментов, выполненных в 1881 г. Движение Земли вокруг Солнца и через эфир … Википедия

    опыт Майкельсона-Морлея - Maikelsono ir Morlio eksperimentas statusas T sritis fizika atitikmenys: angl. Michelson Morley experiment vok. Michelson Morley Versuch, m rus. опыт Майкельсона Морлея, m pranc. expérience de Michelson et Morley, f; expérience de Michelson… … Fizikos terminų žodynas

    Доказал независимость скорости света от движения Земли (А. А. Майкельсон 1881). В классической физике опыт Майкельсона не нашел объяснения; в относительности теории постоянство скорости света во всех инерциальных системах отсчета принимается как… … Большой Энциклопедический словарь

    Доказал независимость скорости света от движения Земли (А. А. Майкельсон, 1881). В классической физике Майкельсона опыт не нашёл объяснения; в относительности теории постоянство скорости света во всех инерциальных системах отсчёта принимается как … Энциклопедический словарь

    Поставлен амер. физиком А. А. Майкельсоном (A. A. Michelson) в 1881 с целью измерения влияния движения Земли на скорость света. В физике кон. 19 в. предполагалось, что свет распространяется в нек рой универсальной мировой среде эфире. При этом… … Физическая энциклопедия

    Опыт, поставленный впервые А. Майкельсоном в 1881 с целью измерения влияния движения Земли на скорость света. Отрицательный результат М. о. был одним из основных экспериментальных фактов, легших в основу относительности теории (См.… … Большая советская энциклопедия

    Майкельсона-Морли опыт - опыт, поставленный впервые в 1881 году американскими физиками Майкельсоном и Морли с целью обнаружения влияния орбитального движения Земли на скорость света, но не выявивший этого влияния (известен в науке как «отрицательный результат» опыта).… … Начала современного естествознания

), наподобие упругих волн в газе или жидкости. Если источник и приёмник света, находящиеся на фиксированном расстоянии друг от друга, движутся со скоростью v сквозь эту субстанцию, то время распространения света от источника до приёмника будет зависеть от взаимного расположения вектора скорости и вектора, соединяющего источник и приёмник. Относительная разность времени Δt /t при распространении света параллельно и перпендикулярно потоку эфира по порядку величины близка к (v /c ) 2 , если скорость эфира много меньше скорости света. В эксперименте Майкельсона использовалось орбитальное движение Земли сквозь гипотетический эфир (предположительно неподвижный относительно Солнца), причём измерялась разность времени прохождения света одновременно через два перпендикулярных плеча интерферометра; при повороте прибора в потоке эфира время прохождения света через плечи интерферометра должно было бы измениться, что привело бы к изменению разности фаз электромагнитной волны в параллельном и перпендикулярном плече и к изменению наблюдаемой интерференционной картины , возникающей при сложении двух этих пучков света.

Рассмотрим упрощённый вариант, когда одно из плеч (1) расположено по движению эфира через прибор, другое плечо перпендикулярно ему.

Вычисляем общее время t 1 {\displaystyle t_{1}} прохождения света через плечо 1, используя сумму времён прямого и обратного движения и обозначив длину плеча L 0 {\displaystyle L_{0}} :

t 1 = L 0 c + v + L 0 c − v = {\displaystyle t_{1}={\frac {L_{0}}{c+v}}+{\frac {L_{0}}{c-v}}=} 2 c L 0 c 2 − v 2 = 2 L 0 c 1 1 − v 2 c 2 ≈ 2 L 0 c (1 + v 2 c 2) . {\displaystyle {\frac {2cL_{0}}{c^{2}-v^{2}}}={\frac {2L_{0}}{c}}{\frac {1}{1-{\frac {v^{2}}{c^{2}}}}}\approx {\frac {2L_{0}}{c}}\left(1+{\frac {v^{2}}{c^{2}}}\right).}

Приближение связано с тем, что v 2 / c 2 ≪ 1 {\displaystyle v^{2}/c^{2}\ll 1} (порядка 10 − 8 {\displaystyle 10^{-8}} , когда берётся скорость эфира v {\displaystyle v} ≈ 30 км/с ≈ 10 −4 c , равная по модулю и противоположная по направлению скорости орбитального движения Земли).

v 1 = | v 1 | = v 2 + c 2 = c 1 + v 2 c 2 {\displaystyle v_{1}=|\mathbf {v_{1}} |={\sqrt {v^{2}+c^{2}}}=c{\sqrt {1+{\frac {v^{2}}{c^{2}}}}}} .

Мы можем теперь вычислить:

t 2 = 2 L 1 c 1 1 + v 2 c 2 ≈ 2 L 1 c (1 − v 2 2 c 2) {\displaystyle t_{2}={\frac {2L_{1}}{c}}{\frac {1}{\sqrt {1+{\frac {v^{2}}{c^{2}}}}}}\approx {\frac {2L_{1}}{c}}\left(1-{\frac {v^{2}}{2c^{2}}}\right)} .

L 1 {\displaystyle L_{1}} - это гипотенуза, по ней сигнал идёт с увеличенной скоростью, при этом прохождение катета со скоростью c {\displaystyle c} даст то же время, что и прохождение гипотенузы с этой увеличенной скоростью. Поэтому достаточно рассмотреть время в виде

t 2 = 2 L 0 c {\displaystyle t_{2}={\frac {2L_{0}}{c}}}

Разность фаз пропорциональна:

δ = c (t 2 − t 1) = 2 (L 0 − L 0 1 − v 2 c 2) {\displaystyle \delta =c(t_{2}-t_{1})=2\left({L_{0}-{\frac {L_{0}}{1-{\frac {v^{2}}{c^{2}}}}}}\right)}

S = | δ + δ ′ | {\displaystyle S=|\delta +\delta ^{"}|} , где δ ′ {\displaystyle \delta ^{"}} пропорциональна разности фаз при повороте на π 2 {\displaystyle {\frac {\pi }{2}}} :

S = 2 L 0 | 1 − 1 1 − v 2 c 2 | ≈ 2 L 0 v 2 c 2 . {\displaystyle S=2L_{0}\left|1-{\frac {1}{1-{\frac {v^{2}}{c^{2}}}}}\right|\approx 2L_{0}{\frac {v^{2}}{c^{2}}}.}

Было показано, что теория эфира подразумевает разность фаз в параллельном и перпендикулярном плече, поддающуюся количественной оценке и обнаруживаемую соответствующими экспериментальными средствами (интерферометр Майкельсона - Морли).

История [ | ]

Предыстория [ | ]

Теория распространения света как колебаний особой среды - светоносного эфира - появилась в XVII веке. В 1727 году английский астроном Джеймс Брэдли объяснил с её помощью аберрацию света . Предполагалось, что эфир неподвижен, но после опытов Физо возникло предположение, что эфир частично или полностью увлекается в ходе движения вещества.

Экспериментальная установка Майкельсона - Морли, на которой выполнялись измерения 1887 года . Аппарат размещён на массивной каменной плите размерами 1,5×1,5×0,3 м , плавающей в ртути, чтобы устранить изменение длины плеч интерферометра при повороте аппарата

Под влиянием этих результатов Джордж Фитцджеральд и Лоренц выдвинули гипотезу о сокращении материальных тел в направлении движения в неподвижном и неувлекаемом эфире (1889).

Опыты Миллера [ | ]

По мнению профессора Дэйтона К. Миллера (Кейсовская школа прикладных наук):

Можно полагать, что эксперимент лишь показал, что эфир в конкретной подвальной комнате увлекается в продольном направлении вместе с ней. Мы собираемся поэтому переместить аппарат на холм, чтобы посмотреть, не обнаружится ли там эффект. [ ]

Осенью 1905 г. Морли и Миллер провели эксперимент на Евклидовых высотах в Кливленде , находящихся на высоте около 90 м над озером Эри и около 265 м выше уровня моря. В 1905-1906 гг. было сделано пять серий наблюдений, которые дали определённый положительный эффект - около 1/10 ожидаемого дрейфа .

В марте 1921 г. методика и аппарат были несколько изменены и получен результат в 10 км/с «эфирного ветра». Результаты были тщательно проверены на предмет возможного устранения погрешностей , связанных с магнитострикцией и тепловым излучением . Направление вращение аппарата не оказывало влияния на результат эксперимента .

Более поздние исследования результатов, полученных Д. Миллером, показали, что флуктуации, наблюдавшиеся им и интерпретированные как наличие «эфирного ветра», являются следствием статистических ошибок и неучёта температурных эффектов .

Опыты Кеннеди [ | ]

Теперь я хотел бы сделать несколько замечаний по поводу эксперимента Миллера. Я считаю, что существует серьёзная проблема, связанная с эффектом, периодическим для полного оборота аппарата, и сброшенная со счетов Миллером, подчеркивающим значение эффекта полупериода, то есть повторяющегося при полуобороте аппарата, и касающаяся вопроса об эфирном ветре. Во многих случаях эффект полного периода значительно больше эффекта полупериода. По Миллеру эффект полного периода зависит от ширины полос и будет нулевым для неопределенно широких полос.

Хотя Миллер утверждает, что он смог исключить этот эффект в значительной степени в своих замерах в Кливленде, и это можно легко объяснить в эксперименте, я хотел бы более четко понять причины этого. Говоря в данный момент как приверженец теории относительности, я должен утверждать, что такого эффекта вовсе не существует. Действительно, поворот аппарата в целом, включая источник света, не дает какого-либо сдвига с точки зрения теории относительности. Никакого эффекта не должно быть, когда Земля и аппарат находятся в покое. По Эйнштейну такое же отсутствие эффекта должно наблюдаться для движущейся Земли. Эффект полного периода, таким образом, находится в противоречии с теорией относительности и имеет большое значение. Если затем Миллер обнаружил систематические эффекты, существование которых нельзя отрицать, важно также узнать причину эффекта полного периода .

Опыты Майкельсона и Гэля [ | ]

Схема опыта Майкельсона - Гэля

В 1925 г. Майкельсон и Гэль у Клиринга в Иллинойсе уложили на земле водопроводные трубы в виде прямоугольника. Диаметр труб 30 см . Трубы AF и DE были направлены точно с запада на восток, EF, DA и CB - с севера на юг. Длины DE и AF составляли 613 м ; EF, DA и CB - 339,5 м . Одним общим насосом, работающим в течение трех часов, можно откачать воздух до давления 1 см ртутного столба. Чтобы обнаружить смещение, Майкельсон сравнивает в поле зрительной трубы интерференционные полосы, получаемые при обегании большого и малого контура. Один пучок света шёл по часовой стрелке, другой против. Смещение полос, вызываемое вращением Земли, разные люди регистрировали в различные дни при полной перестановке зеркал. Всего было сделано 269 измерений. Теоретически предполагая эфир неподвижным, следует ожидать смещения полосы на 0,236 ± 0,002 . Обработка данных наблюдений дала смещение 0,230 ± 0,005 , таким образом подтвердив существование и величину эффекта Саньяка .

Современные варианты [ | ]

В 1958 году в Колумбийском университете (США) был проведён ещё более точный эксперимент с использованием противонаправленных лучей двух мазеров , показавший независимость частоты от движения Земли с точностью около 10 −9 %.

Ещё более точные измерения в 1974 году довели чувствительность до 0,025 м/с . Современные варианты эксперимента Майкельсона вместо интерферометров используют оптические и криогенные [прояснить ] микроволновые резонаторы и позволяют обнаружить отклонение скорости света Δc /c , если бы оно составляло ~10 −18 . Кроме того, современные варианты эксперимента Майкельсона чувствительны к гипотетическим нарушениям лоренц-инвариантности не только в уравнениях Максвелла (для электромагнитных волн, как в классическом эксперименте), но и в

Мы уже говорили, что в свое время были сделаны попытки определить абсолютную скорость движения Земли сквозь воображаемый «эфир», который, как думали тогда, пропитывает собой все пространство. Самый известный из таких опытов проделали в 1887 г. Майкельсон и Морли. Но только через 18 лет отрицательные результаты их опыта объяснил Эйнштейн.

Для опыта Майкельсона — Морли использовался прибор, схема которого показана на фиг. 15.2. Главные части прибора: источник света А, посеребренная полупрозрачная стеклянная пластинка В, два зеркала С и Е. Все это жестко укрепляется на тяжелой плите. Зеркала С и Е размещены были на одинаковом расстоянии L от пластинки В. Пластинка В расщепляет падающий пучок света на два, перпендикулярных один к другому; они направляются на зеркала и отражаются обратно на пластинку В. Пройдя снова сквозь пластинку В, оба пучка накладываются друг на друга (D и F). Если время прохождения света от В до Е и обратно равно времени прохождения от В до С и обратно, то возникающие пучки D и F окажутся в фазе и усилятся взаимно; если же эти времена хоть немного отличаются, то в пучках возникает сдвиг по фазе и, как следствие,— интерференция. Если прибор в эфире «покоится», то времена в точности равны, а если он движется направо со скоростью и, то появится разница во времени. Давайте посмотрим, почему.

Сначала подсчитаем время прохождения света от В к Е и обратно. Пусть время «туда» равно t 1 , а время «обратно» равно t 2 . Но пока свет движется от В до зеркала, сам прибор уйдет на расстояние ut 1 , так что свету придется пройти путь L + ut 1 со скоростью с. Этот путь можно поэтому обозначить и как ct 1 , следовательно,
ct 1 = L + ut 1 , или t 1 = l/(c - u)
(этот результат становится очевидным, если учесть, что скорость света по отношению к прибору есть с — u; тогда как раз время равно длине L, деленной на с — u). Точно так же можно рассчитать и t2. За это время пластинка В приблизится на расстояние ut 2 , так что свету на обратном пути придется пройти только L — ut 2 . Тогда
ct 2 = L -ut 2 , или t 2 = l/(c +u)
Общее же время равно
t 1 + t 2 = 2Lc/(c 2 - u 2);
удобнее это записать в виде

А теперь подсчитаем, сколько времени t 3 свет будет идти от пластинки В до зеркала С. Как и прежде, за время t 3 зеркало С сдвинется направо на расстояние ut 3 (до положения С), а свет пройдет по гипотенузе ВС расстояние ct 3 . Из прямоугольного треугольника следует
(ct 3) 2 = L 2 + (ut 3) 2 ,
или
L 2 = c 2 t 2 3 - u 2 t 2 3 = (c 2 - u 2)t 2 3 ,
откуда
t 3 = l/√(c 2 - u 2)

При обратной прогулке от точки С` свету приходится пройти то же расстояние; это видно из симметрии рисунка. Значит, и время возвращения то же (t 3), а общее время равно 2t 3 . Мы запишем его в виде

Теперь мы можем сравнить оба времени. Числители в (15.4) и (15.5) одинаковы — это время распространения света в покоящемся приборе. В знаменателях член u 2 /с 2 мал, если только и много меньше с. Знаменатели эти показывают, насколько изменяется время из-за движения прибора. Заметьте, что эти изменения неодинаковы — время прохождения света до С и обратно чуть меньше времени прохождения до Е и обратно. Они не совпадают, даже если расстояния от зеркал до В одинаковы. Остается только точно измерить эту разницу.

Здесь возникает одна техническая тонкость: а что если длины L не точно равны между собой? Ведь точного равенства все равно никогда не добьешься. В этом случае надо просто повернуть прибор на 90°, расположив ВС по движению, a BE — поперек. Различие в длинах тогда перестает играть роль, и остается только наблюдать за сдвигом интерференционных полос при повороте прибора.

Во время опыта Майкельсон и Морли расположили прибор так, что отрезок BE оказался параллельным движению Земли но орбите (в определенный час дня и ночи). Орбитальная скорость равна примерно 30 км/сек, и «снос эфира» в определенные часы дня или ночи и в определенное время года должен достигать этой величины. Прибор был достаточно чувствителен, чтобы заметить такое явление. Но никакого различия во временах обнаружено не было — скорость движения Земли сквозь эфир оказалось невозможно обнаружить. Результат опыта был нулевой.

Это было загадочно. Это настораживало. Первую плодотворную идею, как выйти из тупика, выдвинул Лоренц. Он допустил, что все материальные тела при движении сжимаются, но только в направлении движения. Таким образом, если длина покоящегося тела есть Lo, то длина тела, движущегося со скоростью u (назовем ее L || , где значок || показывает, что движение происходит вдоль длины тела), дается формулой

Если эту формулу применить к интерферометру Манкель-сона — Морли, то расстояние от В до С останется прежним, а расстояние от В до Е укоротится до L√(1 - u 2 /c 2). Таким образом, уравнение (15.5) не изменится, но L в уравнении (15.4) изменится в соответствии с (15.6). В результате мы получим

Сравнивая это с (15.5), мы видим, что теперь t 1 + t 2 = 2t 3 . Стало быть, если прибор действительно сокращается так, как мы предположили, то становится понятным, почему опыт Май-кельсона — Морли никакого эффекта не дал.

Хотя гипотеза сокращения успешно объясняла отрицательный итог опыта, она сама оказалась беззащитной перед обвинением, что ее единственная цель — избавиться от трудностей в объяснении опыта. Она была чересчур искусственной. Однако сходные трудности возникали и в других опытах по обнаружению эфирного ветра. В конце концов стало казаться, что природа вступила в «заговор» против человека, что она прибегла к конспирации и то и дело вводит какие-то новые явления, чтобы свести к нулю каждое явление, с помощью которого человек пытается измерить u.

И наконец, было признано (на это указал Пуанкаре), что полная конспирация — это и есть закон природы! Пуанкаре предположил, что в природе есть закон, заключающийся в том, что нельзя обнаружить эфирный ветер никаким способом, т. е. абсолютную скорость обнаружить невозможно.

Трудно представить себе абсолютную пустоту - полный вакуум, не содержащий чего бы то ни было. Человеческое сознание стремится заполнить его хоть чем-то материальным, и на протяжении долгих веков человеческой истории считалось, что мировое пространство заполнено эфиром.

Идея состояла в том, что межзвездное пространство заполнено какой-то невидимой и неосязаемой тонкой субстанцией. Когда была получена система уравнений Максвелла , предсказывающая, что свет распространяется в пространстве с конечной скоростью, даже сам автор этой теории полагал, что электромагнитные волны распространяются в среде, подобно тому, как акустические волны распространяются в воздухе, а морские - в воде.

В первой половине XIX столетия ученые даже тщательно проработали теоретическую модель эфира и механику распространения света, включая всевозможные рычаги и оси, якобы способствующие распространению колебательных световых волн в эфире.В 1887 году два американских физика - Альберт Майкельсон и Эдвард Морли - решили совместно провести эксперимент, призванный раз и навсегда доказать скептикам, что светоносный эфир реально существует, наполняет Вселенную и служит средой, в которой распространяются свет и прочие электромагнитные волны. Майкельсон обладал непререкаемым авторитетом как конструктор оптических приборов, а Морли славился как неутомимый и непогрешимый физик-экспериментатор. Придуманный ими опыт проще описать, чем провести практически.


Майкельсон и Морли использовали интерферометр - оптический измерительный прибор, в котором луч света расщепляется надвое полупрозрачным зеркалом (стеклянная пластина посеребрена с одной стороны ровно настолько, чтобы частично пропускать поступающие на нее световые лучи, а частично отражать их; аналогичная технология сегодня используется в зеркальных фотоаппаратах). В итоге луч расщепляется и два получившихся когерентных луча расходятся под прямым углом друг к другу, после чего отражаются от двух равноудаленных от полупрозрачного зеркала зеркал-отражателей и возвращаются на полупрозрачное зеркало, результирующий пучок света от которого позволяет наблюдать интерференционную картину и выявлять малейшую десинхронизацию двух лучей (запаздывании одного луча относительно другого).

Опыт Майкельсона-Морли был принципиально направлен на то, чтобы подтвердить (или опровергнуть) существование мирового эфира посредством выявления «эфирного ветра» (или факта его отсутствия). Действительно, двигаясь по орбите вокруг Солнца, Земля совершает движение относительно гипотетического эфира полгода в одном направлении, а следующие полгода в другом. Следовательно, полгода «эфирный ветер» должен обдувать Землю и, как следствие, смещать показания интерферометра в одну сторону, полгода - в другую.

Итак, наблюдая в течение года за своей установкой, Майкельсон и Морли не обнаружили никаких смещений в интерференционной картине: полный эфирный штиль! (Современные эксперименты подобного рода, проведенные с максимально возможной точностью, включая эксперименты с лазерными интерферометрами, дали аналогичные результаты.)

Итак: эфирного ветра, а, стало быть, и эфира не существует.

В отсутствие эфирного ветра и эфира, как такового, стал очевиден неразрешимый конфликт между классической механикой Ньютона (подразумевающей некую абсолютную систему отсчета) и уравнениями Максвелла (согласно которым