Страница 51 из 60

ВЛИЯНИЕ РЕЖИМОВ ЧАСТЫХ ПУСКОВ И ОСТАНОВОВ ЭНЕРГОБЛОКОВ НА НАДЕЖНОСТЬ И ЭКОНОМИЧНОСТЬ РАБОТЫ ОБОРУДОВАНИЯ
Анализ исследований работы энергоблоков в режиме глубоких разгрузок диспетчерского графика электрических нагрузок ГРЭС на ночь, на выходные или праздничные дни показывает, что для эффективного ведения режима работы энергоблоков необходимо часть их останавливать в резерв . В этих условиях задачи обеспечения надежности и долговечности оборудования при частых пусках и остановах приобретают исключительно важное значение по двум причинам:
большинство энергоблоков уже отработало свой расчетный ресурс, и в этой ситуации важно определить влияние числа пусков на долговечность оборудования и тем самым обеспечить своевременное планирование производства запчастей и замены оборудования;
энергооборудование, которое привлекается для покрытия пиковых нагрузок, спроектировано на работу в стационарном режиме.
Для выявления влияния переменных режимов на надежность, экономичность и эксплуатационные затраты энергоблоков с турбинами К-160-130 ПОАТ ХТЗ (дубль-блок с котлами ПК-38 и моноблок с котлом ТГМ-94) некоторые из них были специально переведены в режим опытной эксплуатации с частыми пусками и остановами .
На первом этапе исследований в режиме частых пусков и остановов выполнялись контрольные пуски опытных энергоблоков, контроль и анализ пусков, проводимых эксплуатационным персоналом, разработка предложений по улучшению эксплуатационных режимов пуска; сбор материалов по повреждаемости оборудования энергоблоков, работающих в режиме опытной эксплуатации и в обычном эксплуатационном режиме, определение изменения экономичности энергоблоков, определение влияния частых пусков-остановов на коррозию воздухоподогревателей и газоходов котлов опытных энергоблоков, наблюдение за водным режимом опытных энергоблоков, контроль качества металла опытных энергоблоков по специально разработанной программе.
В процессе анализа работы, проведенной на первом этапе, было установлено, что надежность, экономичность, повреждаемость, водный режим и скорость коррозии воздухоподогревателей и газоходов практически одинаковы для опытных энергоблоков и энергоблоков, находящихся в обычной эксплуатации.
С учетом результатов исследований, полученных на первом этапе, а также с учетом времени работы опытных энергоблоков, которое составляло около 100 тыс. ч, на втором этапе была проведена следующая работа: подбор и анализ материалов по повреждаемости оборудования, периодический контроль эксплуатационных пусков (два-три пуска в год), контроль состояния металла оборудования после завершения второго этапа работы.
На первом этапе опытной эксплуатации число пусков опытных энергоблоков было примерно в 2 раза больше, чем любых других энергоблоков этих ГРЭС. В последующие годы по условиям работы электростанций превышения числа пусков опытных энергоблоков над другими не отмечалось (рис. 5.14 и 5.15)
При анализе пусковых режимов дубль-блока на первом этапе исследования были выявлены неудовлетворительные режимы прогрева арматуры узла встроенных сепараторов, коллекторов пароперегревателя, главного паропровода.

Рис. 5.14. Число пусков дубль-блоков 160 МВт с котлами ПК ЗВ в процессе их эксплуатации

В связи с этим был поставлен вопрос о реконструкции пусковой схемы для приближения ее к типовой схеме дубль-блоков 200 и 300 МВт с прямоточными котлами. После внедрения ряда рекомендаций, в частности после врезки сбросных трубопроводов Dy100 и Dy 50 мм 1 и II ступеней встроенного сепаратора, установки байпаса 50 мм с клапаном и задвижки на выпаре из встроенного сепаратора, стало возможным проводить пуски котла на сепараторном режиме при форсировках топки по топливу, соответствующих указанным в типовых инструкциях для энергоблоков 200 МВт с прямоточными котлами, и выдерживать скорости прогрева толстостенных элементов котла, близкие к рекомендуемым (10- 15° С/мин).


Рис 5.15. Число пусков моноблоков 160 МВт с котлом ТГМ-94 в процессе их эксплуатации (обозначения см. на рис 5.14)

С учетом перспективы дальнейшей эксплуатации всех дубль- блоков ГРЭС при переменном графике нагрузок на втором этапе было рекомендовано дальнейшее усовершенствование пусковой схемы для приближения ее к типовой: установка одного ВС на блок, замена задвижек на регулирующие клапаны на трубопроводе после встроенных сепараторов в перегревательный тракт, а также на сбросных трубопроводах Dy 100 мм после встроенных сепараторов в расширитель (рис. 5.16)
Анализ экспериментальных материалов по пусковым режимам моноблоков показал, что ограничений при пусках из-за температурной неравномерности по периметру барабана (А/ «верх-низ») не имеется, максимальные разности температур не превышают допустимых. Форсировка топки, как правило, низкая. Регулирование тепловыделения в топке в начальный период растопки производилось путем уменьшения количества включенных форсунок, а далее изменением давления мазута. Повышение температуры насыщения в барабане не превышало допустимых значений. Температурный режим потолочного, ширмового и конвективного пароперегревателей во всех пусках оценивался как вполне удовлетворительный.
Было отмечено типичное для большинства пусков дубль-блока превышение скорости прогрева ГПЗ над допустимой.


Рис. 5.16. Схема растопочного узла котла ПК-38 дубль-блока 160 МВт:
а - проектная; б - реконструированная

Как правило, максимальная скорость прогрева ГПЗ наблюдалась в момент начала прогрева участков паропроводов за стопорными клапанами. Существенного снижения скорости прогрева ГПЗ-1 дубль-блока удалось добиться открытием их до начала растопки котла. Был опробован также режим прогрева ГПЗ-2 подключаемого корпуса путем прогрева обратным ходом.
Очевиден вывод о необходимости эффективного прогрева тупиковых отводов от основных трасс паропроводов. Так, на отводах к главным предохранительным клапанам дубль-блока и к предохранительным клапанам промперегрева моноблока выполнены постоянно действующие шунтирующие линии, которые поддерживают эти тупиковые участки в постоянно прогретом состоянии. Отводы к БРОУ-2 на дубль-блоках и отводы к БРОУ-1 и РОУ на моноблоках такими линиями прогрева не снабжены, следствием чего является высокая повреждаемость тройниковых соединений на этих отводах.
В связи с неодновременным подключением каждого из котлов дубль-блока к турбине по вторичному пару прогрев тупиковых участков паропроводов перед отсечными клапанами ЦСД осуществлялся неравномерно. Разворот турбины начинался при разности температур пара перед отсечными клапанами до 100- 150° С при пусках энергоблока из неостывшего состояния против допускаемых инструкцией 50° С. Была предложена и опробована методика предтолчкового прогрева указанных участков со сбросом пара через БРОУ-2 неработающего котла и открытием обоих ППГ-2. Это позволило, практически не увеличивая продолжительности пуска, сократить разность температур перед клапанами до 50° С.
Показатели надежности, экономичности и анализ повреждаемости энергоблоков сравнивались с теми же показателями двух других дубль-блоков и трех моноблоков, установленных на ГРЭС и работающих в обычном эксплуатационном режиме. Оценка надежности проводилась по следующим показателям: общему количеству отказов и источникам возникновения отказов, продолжительности и коэффициентам внеплановых простоев, коэффициентам оперативной готовности, наработке на отказ.
Сравнительный анализ надежности котлов дубль-блоков показал, что их наиболее повреждаемым элементом является нижняя радиационная часть, а моноблоков конвективный пароперегреватель. Следующим по количеству повреждений для дубль- блоков является промежуточный пароперегреватель, для моноблоков - испарительные поверхности (топочные краны). Анализ распределения отказов по источникам их возникновения показывает, что наибольшее число отказов котлов дубль- и моноблоков возникает из-за недостатков конструкции, дефектов заводской и монтажной сварки, а также эксплуатационных режимов.
Абсолютное количество повреждений котлов рассматриваемых энергоблоков и энергоблоков, находящихся в обычной эксплуатации, одинаковое.
Количество вынужденных остановов турбин дубль- и моноблоков практически одинаковое и зависит от качества ремонта и уровня организации эксплуатации. Подтверждают это и причины вынужденных остановов, основными из которых являются неплотности трубной системы конденсатора, повышение уровня в ПВД, повреждения подшипников турбины и генератора.
Анализ материалов по изменению экономичности котлов дубль-блоков показал, что максимальная разность потерь с уходящими газами и удельных расходов на тягу и дутье между измеренными значениями для котлов исследуемых энергоблоков и энергоблоков, находящихся в обычной эксплуатации, составляет +0,17%, что находится на уровне точности определения. Снижение экономичности опытного моноблока соизмеримо со снижением экономичности энергоблоков, находящихся в обычной эксплуатации, и составляет примерно 1,2%. Вызвано оно повышением температуры уходящих газов в результате накопления золовых отложений на конвективных поверхностях и увеличением присосов по газовому тракту котлов. Изменение экономичности турбоагрегатов для дубль-блоков составляет примерно 2,2%, а для моноблоков 1%.
Анализ состояния водно-химического режима проводился на дубль-блоке. Максимальное количество отложений на внутренних поверхностях котлов энергоблока не превышало допустимых значений. При сравнении прироста отложений на поверхностях нагрева энергоблоков, находящихся в обычной эксплуатации, и исследуемых энергоблоков не наблюдалось существенного различия в динамике роста отложений. На первом этапе опытной эксплуатации наблюдался заметный занос ЧВД и ЧСД проточной части турбины дубль-блока. Общее количество отложений с учетом неполноты снятия не превышало 1 кг Отложения не вызывали ограничения мощности. Увеличение заноса проточной части турбины можно объяснить интенсификацией вымывания и миграцией отложений по тракту энергоблока.
Водный режим энергоблока на последующем этапе эксплуатации характеризуется более постоянными показателями по содержанию продуктов коррозии в питательной воде. Было отмечено повышенное количество отложений на поверхности нагрева на одном из котлов дубль-блока 160 МВт до 410 г/м2, что превышает установленные для таких котлов нормы - 300 г/м2 В то же время на втором котле исследуемых энергоблоков количество отложений не превышало 130 г/м2. Значительная разница загрязненности поверхностей нагрева этих котлов объясняется не режимом эксплуатации, а качеством проведенной в период капитального ремонта эксплуатационной кислотной промывки, при которой промывочный раствор неравномерно поступал по всем трубам панелей. Такое предположение подтверждается наличием незначительных отложений на тех же поверхностях нагрева, но на других трубах, вырезанных в качестве образцов в этот же капитальный ремонт. Общий занос проточной части турбины низок и соизмерим с заносом предыдущих лет, - до перевода энергоблоков в режим работы с частыми пусками и остановами.
Особое внимание уделялось анализу повреждаемости элементов энергооборудования литых деталей трубопроводов, арматуры, корпусов ЦВД и ЦСД, роторов ВД и СД, корпусов стопорных и регулирующих клапанов высокого и среднего давлений, барабана котла. Анализ результатов контроля показал, что четкой взаимосвязи между числом пусков-остановов и повреждаемостью металла литых деталей и барабана нет . При статистическом анализе повреждений за весь период эксплуатации энергоблоков (1976-1987 гг.) установлено, что ГРЭС должна планировать ежегодно 30% ресурсов на ремонт арматуры и литых деталей паро- и трубопроводов для исследуемых энергоблоков и энергоблоков, находящихся в обычной эксплуатации, а на замену-не менее 10% общего числа деталей, проверяемых в период капитальных ремонтов.
К наиболее потенциально аварийным узлам относятся арматура БРОУ-1, БРОУ-2, тройники в пределах котлов в схемах свежего пара, горячего и холодного промперегрева, все детали, которые расположены вблизи мест ввода различных впрыскивающих устройств. Места повреждений литых деталей в подавляющем большинстве случаев сосредоточены на внутренних поверхностях, в наиболее низко расположенных местах, а также внутри и снаружи в местах радиусных переходов и других концентраторов напряжений. Самым распространенным видом повреждений являются трещины. В местах концентрации напряжений они в основном располагаются по линиям наибольших действующих напряжений от внутреннего давления. На нижних поверхностях внутренних полостей растрескивание носит характер сплошного усталостного и коррозионно-усталостного поражения. Причинами таких повреждений, πο-видимому, являются:
быстрое охлаждение внутренних поверхностей - тепловые удары из-за попадания влаги, что приводит к появлению трещин, ориентированных, в первую очередь, по линиям концентраторов напряжений, а при резком охлаждении - к сплошному растрескиванию на внутренних поверхностях;
быстрый прогрев при пусках, вызывающий возникновение градиента температур по толщине стенки с появлением трещин на наружной поверхности в местах радиусных переходов, а также в любых других местах наружной поверхности, где по толщине стенки имеются различные дефекты литья - рыхлоты, раковины, пористость и др., повышенная толщина стенок литых элементов и меньший ресурс сопротивляемости действию временных напряжений, способствующие более быстрому появлению и развитию таких повреждений в арматуре и других литых деталях по сравнению с трубопроводами.
В немалой степени долговечность основных элементов пароводяного тракта зависит от совершенства применяемой технологии пусков-остановов. Необходимо строго соблюдать ПТЭ и эксплуатационные положения технологии пусков-остановов, постоянно ее совершенствуя с учетом новых теоретических разработок и экспериментальных данных.
Все изменения, происшедшие в металле энергоооборудования за период работы опытных энергоблоков в режиме частых пусков и остановов, характерны и для металла энергооборудования, работающего в обычном эксплуатационном режиме.
В микроструктуре металла существенных изменений не произошло. Содержание легирующих элементов в карбидной фазе изменилось незначительно. Лабораторными исследованиями установлено, что свойства металла практически не изменились. Сварные соединения камер пароперегревателей, паропроводов и соединения типа литья с трубой находятся в удовлетворительном состоянии. Сравнив полученные результаты с данными предыдущих проверок (по дефектограммам), установили, что развития дефектов, выявленных ранее в сварных соединениях, не наблюдалось.
По результатам проведения магнитопорошковой дефектоскопии, металлографического анализа и измерения твердости установлено, что роторы ЦВД и ЦСД турбин, включая осевые каналы, находятся в удовлетворительном состоянии. Состояния внутренних поверхностей нагрева котлов и проточной части турбины опытного энергоблока практически не отличаются от состояния поверхностей блоков, работающих в обычном эксплуатационном режиме. Механические свойства металла практически не изменялись и находились в пределах требований технических условий на поставку. Изменений в структуре металла не произошло. Содержание легирующих элементов в карбидной фазе изменилось незначительно. Исходя из того, что энергоблоки 160 МВт все чаще привлекаются для покрытия неравномерностей графиков электрической нагрузки энергосистем и что они отработали свой ресурс, в процессе дальнейшей эксплуатации необходимо соблюдать оптимальные температурные режимы работы металла энергооборудования и осуществлять проверку и исследование состояния металла проводить в капитальные и текущие ремонты в объеме, предусмотренном действующими инструкциями и другими директивными материалами, обратив особое внимание на состояние литых деталей и арматуры, дополнительного (внеочередного) контроля и исследования металла не требуется.

На основании вышеизложенного можно заключить, что надежность и экономичность котлов, турбин, энергоблоков в целом, специально переведенных в режим работы с частыми пусками и остановами, такие же, как и при обычной эксплуатации. Связь между числом пусков и повреждаемостью элементов энергоободования не обнаружена. В то же время число пусков-остановов, накопленных на исследуемых энергоблоках, с точки зрения малоцикловой усталости металла еще не дает достаточной информации для прогнозирования надежности работы оборудования в рассматриваемом режиме эксплуатации, что требует дальнейшего исследования энергоблоков с обеспечением на них не менее 120 пусков в год и с доведением общего их числа до 1200-1500 . Это позволит решить следующие основные проблемы: определение предельного числа пусков, исходя из долговечности оборудования в пределах расчетного и сверхкритического срока службы; определение влияния частоты пусков на надежность энергооборудования; своевременное планирование производства запасных частей наиболее изнашиваемых деталей и узлов энергооборудования; предотвращение аварийных разрушений остального парка оборудования энергоблоков.

Важнейшей составной частью системы средств выведения являются разгонные блоки (РБ), называемые также межорбитальными буксирами. Разгонные блоки обеспечивают перемещение выводимых полезных грузов с орбиты на орбиту или направление их на отлетные и межпланетные траектории. Для этого РБ должны иметь возможность выполнять один или несколько маневров, связанных с изменением скорости полета, для чего в каждом случае предполагается включение маршевого двигателя. Между этими включениями следуют продолжительные (до нескольких часов) участки пассивного полета по переходным орбитам или траекториям. Таким образом, любой РБ должен иметь маршевый двигатель многократного включения, а также дополнительную реактивную систему или двигательную установку, обеспечивающую ориентацию и стабилизацию движения РБ с КА и создание условий для запуска маршевого двигателя. При этом управление работой его двигателей может осуществляться как от системы управления КА, так и от автономной системы управления самого РБ. В последнем случае он должен иметь специальный приборный отсек для ее размещения.

Разгонный блок “ДМ” предназначен для применения на РН “Протон-К”,”Протон-М” и “Зенит-3”. В 1974 г. прошел первые летные испытания для запуска КА на геостационарную орбиту разгонный блок “Д”, созданный в конце 1960-х гг. для лунной экспедиции. В последующем он был модернизирован, и с 1976 г. для запуска КА на ГСО используется его модификация – блок “ДМ”.

При выведении КА на ГСО РН может работать по двух- или трехимпульсной схеме. При этом в зависимости от долготы стояния КА на ГСО меняются время нахождения РБ на промежуточных орбитах и соответственно общее время полета, которое может составлять от 7 до 21 ч. Во время полета РБ может функционировать или полностью в автономном режиме, или управляться по радио-каналам с Земли.

Двигатель разгонного блока ЖРД РД-58М многократного запуска с турбонасосной системой подачи выполнен по схеме с дожиганием окислительного газа. Работает на компонентах топлива: окислитель – жидкий кислород, горючее – керосин (РГ-1). Двигатель закреплен в карданном подвесе на внутреннем ярусе двухъярусной фермы. Такая установка двигателя позволяет производить управление по каналам тангажа и рыскания. Для управления по крену используется поворотное сопло,работающее на горячем генераторном газе. В состав ЖРД РД-58М входят также блок многократного запуска и агрегаты автоматики с пневмоуправлением. Кроме того, на РБ установлены два двигателя сис-темы обеспечения запуска, которые закреплены на нижнем днище бака горючего и предназначены для создания начальной осе-вой перегрузки. Они включаются перед запуском основного ЖРД. Для предотвращения теплового воздействия истекающей газовой струи на элементы конструкции и ЖРД используется донная защита, которая представляет собой сваренный из трубок каркас, обтянутый ЭВТИ.

Приборный отсек выполнен в виде герметичного торообразного контейнера и закреплен на внутреннем и внешнем ярусах верхней фермы. Контейнер изготовлен разъемным и содержит приборы системы управления, а также воздушно-жидкостную систему терморегулирования. Разгонный блок “ДМ” комплектуется коническим и цилиндрическим переходниками, которые связывают его с РН. При отделении РБ от третьей ступени РН конический переходник отделяется вместе со ступенью, а через некоторое время сбрасывается и ци-линдрический переходник. Масса сухого блока без сбрасываемых элементов – 2200 кг, максимальная длина – 6,26 м, максимальный диаметр – 4,1 м, масса КРТ и газов – 15 095 кг.

Разгонный блок “Фрегат” создан в НПО им. С.А. Лавочкина для использования в составе РН “Союз-2”. Он допускает до 20 включений маршевого двигателя в полете и имеет запас топлива на борту до 5350 кг. ЖРД работает на компонентах топлива AT + НДМГ. Топливо размещено в четырех сферических баках. Еще две такие же сферические емкости используются в качестве приборных контейнеров. Все шесть сфер размещены вокруг маршевого двигателя, камера которого установлена в карданном подвесе. Силовая рама кардана крепится к четырем кронштейнам, каждый из которых приварен к соответствующему топливному баку. На РБ “Фрегат” имеется также двигательная установка ориентации и обеспечения запуска маршевого двигателя. Ее работа основана на каталитическом разложении гидразина, запас которого (-85 кг) размещен в двух небольших сферических баках. Наддувбаков, обеспечивающий вытеснительную подачу всех компонентов топлива, осуществляется гелием. Первый запуск РБ “Фрегат” по программе летных испытаний успешно осуществлен 9 февраля 2000 г. в составе РН “Союз”.

В ГКНПЦ им. М.В. Хруничева создан разгонный блок “Бриз-М”, предназначенный для замены блоков серии “Д”/”ДМ” и использования в составе РН “Протон-К” и “Протон-М”. Новый разгонный блок позволит повысить массу полезной нагрузки, доставляемой на геостационарную орбиту, до 3 т. С 1999 г. РБ “Бриз-М” проходит летные испытания.

РБ “Бриз-М” состоит из центрального блока и окружающего его сбрасываемого тороидального дополнительного топливного бака. Топливный отсек цилиндрический с совмещенным днищем при переднем размещении бака окислителя. Верхнее днище бака окислителя сферическое, а нижнее имеет сложную форму и образует полусферическую нишу. Эта ниша проходит через бак горючего и образована внутренней конической обечайкой бака. Коническая обечайка приварена вверху к нижнему сферическому днищу бака окислителя, а внизу – к нижнему сферическому днищу бака горючего.

Маршевый ЖРД, имеющий возможность многократного (не менее 10) включения, установлен в нише, внутри топливного бака центрального блока. ЖРД малой тяги, работающие на тех же компонентах топлива, что и маршевый двигатель, обеспечивают ориентацию и стабилизацию РБ во время автономного полета, а также поджатие топлива в баках при запусках маршевого двигателя. Установленная в приборном отсеке инерциальная система управления обеспечивает управление полетом РБ “Бриз-М” и его бортовыми системами. РБ оснащен также системой энергопитания и аппаратурой для сбора телеметрической информации и для внешнетраекторных измерений. При создании РБ “Бриз-М” большое внимание было уделено улучшению его эксплуатационных свойств. Так, в частности, заправку РБ компонентами топлива предусматривается производить в заводских условиях с последующей ампулизацией блока.

Принципиальной особенностью конструкции РБ “Бриз-М” является использование многих систем и агрегатов от РБ “Бриз-КМ”, созданного для РН “Рокот”. Для повышения грузоподъемности РБ “Бриз-М” на нем применены сбрасываемые тороидальные топливные баки помимо основных на центральной части блока. Кислородно-водородный разгонный блок (КВРБ) разрабатывается в ГКНПЦ им. М.В. Хруничева для использования с РН “Протон-М”, а в перспективе – с РН тяжелого класса “Ангара”. Создание КВРБ потребовалось для вывода на высокие орбиты перспективных российских космических аппаратов и расширения спектра услуг на рынке коммерческих пусков. Прообразами этого блока стали нереализованный проект ГКНПЦ им. М.В. Хруничева криогенного разгонного блока “Шторм” и созданный для индийской РН GSLV кислородно-водородный блок 12КРБ.

В ходе проектирования КВРБ были также разработаны несколько его вариантов для применения в составе РН “Зенит” и Arian-5, однако эти варианты пока не нашли своих заказчиков. КВРБ выполнен по одноступенчатой схеме и состоит из верхнего переходника, бакового отсека, двигательного отсека и проставки между КВРБ и РН. Баки КВРБ – несущие, расположены последовательно: сверху – бак жидкого кислорода, снизу – бак жидкого водорода.

Система управления и бортовой измерительный комплекс КВРБ создаются на базе аналогичных систем разгонного блока “Бриз-М”. Электронные блоки этих систем установлены на верхнем переходнике. Переходник имеет также стыковочный элемент для установки на КВРБ космических аппаратов как российского, так и иностранного производства. Рассматриваются два варианта маршевого двигателя КВРБ: РД-0146 разработки КБХА и КВД-1М разработки КБХМ. Двигатель РД-0146 создается на базе американского двигателя RL10A-4-1 совместно КБ химавтоматики и компанией Pratt & Whitney. Изготавливаться двигатель будет в Воронеже. Маршевый двигатель имеет тягу в пустоте около 10 тс. Он крепится в карданном подвесе для управления направлением вектора тяги по тангажу и рысканию. Для управления по вращению устанавливаются два блока рулевых микродвигателей.

Возможен многократный запуск двигателя для вывода полезной нагрузки в заданную точку. Проставка двигательного отсека позволяет блоку при минимальных изменениях стыковаться с РН “Протон-М”, “Ангара” и другими носителями. Заправка топливом, сжатыми газами, обеспечение температурных режимов пожаробезопасности, электрические связи осуществляются через отрывные бортовые разъемы, находящиеся на самом блоке. Число магистралей и электрических связей с РН минимально, что упрощает адаптацию РБ к различным носителям.

Головным изготовителем КВРБ будет Ракетно-космический завод (РКЗ) ГКНПЦ им. М.В. Хруничева. Работа над эскизным проектом ведется в тесном взаимодействии с технологическими службами завода и КБ “Салют”,так как часть необходимых технологий уже освоена опытным производством КБ “Салют” при изготовлении индийского блока 12КРБ. Баки и часть конструкции блока покрыты комбинированной теплоизоляцией, а весь блок находится под головным обтекателем. Пространство между КВРБ и обтекателем разбито диафрагмами на несколько зон для обеспечения пожаробезопасности и необходимых температурных режимов.

Одним из первых космических экспериментов было фотографирование Земли, показавшее, как много могут дать наблюдения из космоса для открытия и разумного использования природных ресурсов. Задачи по разработке комплексов фото- и оптикоэлектронного зондирования земли, картографирования, исследования природных ресурсов, экологического мониторинга, а также по созданию ракет-носителей среднего класса на базе ракет Р-7А выполняет бывший филиал № 3 ОКБ,…

В Испании под руководством Испанского национального института аэрокосмических технологий INTA, финансируемого министерством обороны, разрабатывается проект трехступенчатого твердотопливного легкого носителя Capricornio (“Козерог”) для запуска малых КА. Первая ступень РН представляет собой американский РДТТ Castor-4B, a верхние ступени – испанской разработки. Стартовая масса РН, имеющей длину 18,25 м, составляет 15 т. РН способна выводить на низкие околоземные…

Нынешняя реструктуризация аэрокосмической промышленности США – самый широкомасштабный процесс за всю послевоенную историю. С 1990 г. состоялось более 30 сделок по слияниям и поглощениям. Сюда относятся как крупные приобретения одними компаниями отдельных подразделений других фирм, так и слияния самих корпораций с образованием фирм с новым названием. Однако было бы упрощением рассматривать проходящие в зарубежной аэрокосмической…

Получаемые из космоса фундаментальные данные чрезвычайно важны для понимания глубинных космических процессов и их влияния на Землю. Возможность внеатмосферных наблюдений чрезвычайно важна для астрономических исследований. Земная атмосфера, состоящая из азота, кислорода и других газов, сильно поглощает излучение звезд, и наземные телескопы могут наблюдать его в узких спектральных окнах прозрачности. Между тем звезды излучают в очень…

Развитие орбитальных средств различного назначения характеризуется ростом общего уровня их энергопотребления и соответственно энерговооруженности, а следовательно, и срока активного существования. В частности, уровень энергопотребления бортовой ретрансляционной аппаратуры и служебных систем коммуникационных геостационарных КА нового поколения будет составлять до 5-10 кВт при уровне энерговооруженности 1,4-2,0 Вт/кг, что примерно в 2-3 раза выше, чем соответствующие показатели отечественных…

Структурное построение и радиотехнические системы НКУ КА дальнего космоса отличаются рядом существенных особенностей, связанных с большими удалениями и характером движения лунных и межпланетных космических станций. На удалениях, превышающих сотни тысяч километров, видимое движение КА по небосводу напоминает движение планет: в течение сеанса связи положение КА относительно звезд для наземного наблюдателя практически не меняется. Угловые координаты…

Основополагающим документом, имеющим отношение к проблеме сохранения устойчивого экологического состояния космической среды, является Договор по космосу (1967 г.). Статья 1 этого Договора предусматривает осуществление космической деятельности таким образом, чтобы не затруднить и не нарушить права других стран на мирное освоение космоса. В статье 4 Договора подчеркивается, что государства несут международную ответственность за национальную деятельность в…

Вывод Советским Союзом 4 октября 1957 г. искусственного спутника на орбиту вокруг Земли положил начало космической гонке, которая к настоящему времени достигла небывалых масштабов. На начальном ее этапе, проходившем в условиях “холодной” войны, главные побудительные причины, задававшие тон в этом марафоне, носили политический и военный характер. Престиж и безопасность (в широком понимании) государства – вот…

В 1993 г. фирмой Lockheed была начата программа создания семейства РН LLV (Lockheed Launch Vehicle) малой и средней грузоподъемности. Первый пуск первой РН этого семейства – двухступенчатой твердотопливной РН LLV-1 малой грузоподъемности после неоднократных задержек из-за различных неполадок был осуществлен в августе 1995 г., однако закончился неудачей. Характеристики РН LMLV таковы: LMLV-1 грузоподъемностью порядка 1,0…

Процессы реструктуризации аэрокосмической промышленности, происходящие за рубежом, направлены на достижение качественно нового состояния фирм, позволяющего не только выжить в условиях изменяющейся обстановки,но и обеспечить наращивание конкурентных возможностей на рынке космических товаров и услуг. Преимущества, получаемые фирмами в результате реструктуризации, можно условно выделить в четыре группы. Первая группа – текущая экономия на элементах постоянных издержек. Внутрифирменная…

Был создан для межпланетных экспедиций на Венеру и Марс , использовался для запуска лунных станций «Луна-4» … «Луна-14» , АМС «Венера-1» … «Венера-8» , «Марс-1 », «Зонд-1» … «Зонд-3» . Первый полёт в 1960 году , но до запуска блока Л тогда не дошло из-за недоработок конструкции. Первый успешный пуск - 12 февраля 1961 года , с АМС «Венера-1 ».

Конструкция

Блок баков разработан на основе тороидальных баков более раннего блока «Е», использованного в ракетах 8К72 и 8К72К, но, впервые в СССР, двигатель 11Д33 (С1.5400), был сконструирован по схеме с дожиганием генераторного газа, что позволило увеличить его удельный импульс.

Текущее состояние

Всего изготовлено более 320 экземпляров блока Л и его модификаций 2БЛ и 2МЛ, для ракет «Молния » и «Молния-М » .

Эксплуатация ракеты-носителя «Молния-М» завершена 30 сентября 2010 года, последний экземпляр ракеты был использован для запуска спутника «Око» системы СПРН. В демонстрационном зале кафедры СМ-1 МГТУ им. Н.Э. Баумана хранится препарированный Блок Л, использовавшийся в качестве учебного пособия.

В настоящее время (2013 год) для запусков на высокоэллиптические орбиты используется аналогичная по классу РН «Союз-2» с РБ «Фрегат» , обладающая более гибкими возможностями выведения на различные траектории.

Напишите отзыв о статье "Блок Л (разгонный блок)"

Примечания

Ссылки

  • Encyclopedia Astronautica

Отрывок, характеризующий Блок Л (разгонный блок)

Но солнце, застилаемое дымом, стояло еще высоко, и впереди, и в особенности налево у Семеновского, кипело что то в дыму, и гул выстрелов, стрельба и канонада не только не ослабевали, но усиливались до отчаянности, как человек, который, надрываясь, кричит из последних сил.

Главное действие Бородинского сражения произошло на пространстве тысячи сажен между Бородиным и флешами Багратиона. (Вне этого пространства с одной стороны была сделана русскими в половине дня демонстрация кавалерией Уварова, с другой стороны, за Утицей, было столкновение Понятовского с Тучковым; но это были два отдельные и слабые действия в сравнении с тем, что происходило в середине поля сражения.) На поле между Бородиным и флешами, у леса, на открытом и видном с обеих сторон протяжении, произошло главное действие сражения, самым простым, бесхитростным образом.
Сражение началось канонадой с обеих сторон из нескольких сотен орудий.
Потом, когда дым застлал все поле, в этом дыму двинулись (со стороны французов) справа две дивизии, Дессе и Компана, на флеши, и слева полки вице короля на Бородино.
От Шевардинского редута, на котором стоял Наполеон, флеши находились на расстоянии версты, а Бородино более чем в двух верстах расстояния по прямой линии, и поэтому Наполеон не мог видеть того, что происходило там, тем более что дым, сливаясь с туманом, скрывал всю местность. Солдаты дивизии Дессе, направленные на флеши, были видны только до тех пор, пока они не спустились под овраг, отделявший их от флеш. Как скоро они спустились в овраг, дым выстрелов орудийных и ружейных на флешах стал так густ, что застлал весь подъем той стороны оврага. Сквозь дым мелькало там что то черное – вероятно, люди, и иногда блеск штыков. Но двигались ли они или стояли, были ли это французы или русские, нельзя было видеть с Шевардинского редута.
Солнце взошло светло и било косыми лучами прямо в лицо Наполеона, смотревшего из под руки на флеши. Дым стлался перед флешами, и то казалось, что дым двигался, то казалось, что войска двигались. Слышны были иногда из за выстрелов крики людей, но нельзя было знать, что они там делали.

Одна из ступеней ракеты-носителя. При помощи разгонного блока космический аппарат переводится с орбиты, называемой опорной, на другие околоземные орбиты либо выводится на отлетную траекторию к другим планетам.

Первым из советских разгонных блоков, позволяющих осуществлять старт в условиях невесомости, был блок «Л». Первый полет должен был состояться в 1960 г., но из-за недоработок компьютера запуск не был произведен. 12 февраля 1961 г. произошел первый успешный пуск в составе автоматической межпланетной станции «Венера-1». Разгонный блок «Л» создавался для запуска первых межпланетных станций серии «Венера», «Марс» и лунных станций «Луна-4», «Луна-13». Разгонный блок «ДМ», работающий на топливной смеси, в состав которой входит жидкий кислород и керосин, является модификацией блока «Д» космического ракетного комплекса Н1-ЛЗ, который предназначался для полетов на Луну. Блок «Д» был четвертой ступенью в комплексе. Первые три выводили аппарат на низкую орбиту, а пятая разгоняла экспедицию к Луне. Кислородный бак выполнялся в виде сферы и оборудовался теплоизоляцией. Заправка бака осуществлялась кислородом, температура которого около -200 °С. Такая низкая температура кислорода необходима для сокращения потерь в результате испарения, ведь температура кипения жидкого кислорода--183 °С. С понижением температуры увеличивается плотность кислорода и соответственно уменьшается занимаемый объем. Ракета «Протон» с разгонным блоком «Д» использовалась для запуска межпланетных станций серии «Венера» с № 9 по № 16, станций «Вега» и «Фобос», лунных станций «Луна» с № 15 по № 24. Позднее, в 1974 г., начался вывод спутников «Горизонт» и «Экран» на стационарные орбиты с использованием разгонных блоков «Д».

Все новые требования, предъявляемые межпланетными станциями и спутниками связи, привели к тому, что был внесен ряд изменений. Время активного существования увеличилось до 9 ч, и при этом сократилось количество запусков двигателя. Это позволило убрать теплоизоляцию бака двигателя и ряд блоков системы обеспечения запуска.

В настоящее время использование разгонного блока «Д» в составе комплекса «Протон» подходит к концу, но модификация «ДМ-SL» остается в составе комплекса «Зенит». На ракете «Протон» будет использоваться блок «Бриз-М», так как он использует такие же компоненты топлива, по этой же причине остается в строю блок «ДМ-SL» в составе «Зенита». Разгонный блок «Бриз-М», первый запуск которого в составе ракетного комплекса «Протон-М» состоялся 7 апреля 2001 г., обеспечивает выведение полезной нагрузки на низкие, средние, высокие орбиты, в том числе и геостационарные орбиты.

При использовании блока «Бриз-М» увеличивается до 3,3 т масса полезной нагрузки, выводимой на геостационарную орбиту Земли. Модификация, разгонный блок «Бриз-КМ», благодаря возможности многократного включения своего маршевого двигателя, позволяет использовать различные схемы выведения космических аппаратов в космос, в том числе позволяет реализовать групповой запуск на несколько различных орбит. В НПО Лавочкина был разработан разгонный блок нового поколения «Фрегат». Сфера применения - в составе ракет-носителей среднего и тяжелого классов. Может осуществлять вывод на опорные орбиты, геостационарную и геопереходную орбиты, используется на различных участках для стабилизации и ориентации. В 2000 г. произошел первый пуск «Фрегата». В 2005 г. «Фрегат» в составе ракеты-носителя «Союз-ФГ» позволил запустить межпланетную станцию «Венера-экс-пресс».

Что касается перспектив развития, то в настоящее время в ГКНПЦ им. Хру-ничева совместно с НПО «Молния» ведется разработка многоразовых ускорителей типа «Байкал» вместо универсальных одноразовых разгонных блоков. Для реализации этого проекта разгонный блок нового образца должен снабжаться системой спасения, основанной на концепции беспилотного летательного аппарата, который должен возвращаться в режиме дозвукового крейсерского полета на место старта. Необходимо оснащать разгонный блок вспомогательным воздушно-реактивным двигателем и оперением, компоновка осуществляется по аэродинамической схеме.

Для ориентации отработавшего разгонного блока перед входом в плотные слои атмосферы блоки оснащаются реактивной системой управления, после входа в атмосферу управление производится аэродинамическими органами управления. Планирование переходит в моторный полет, реализуемый воз-душно-реактивными двигателями, которые могут быть установлены в носовой части многоразового ускорителя. Для посадки блок может оснащаться колесным шасси самолетного типа. Необходимо оснащать разгонный блок бортовым измерительным комплексом, который будет осуществлять сбор и передачу на космодром информации о состоянии и функционировании бортовых систем.

Первые испытания многоразовых ускорителей ракеты-носителя семейства «Ангара» на масштабных моделях были уже проведены разработчиками. Технология многоразовых разгонных блоков достаточно проста, чтобы могла быть реализована и использована при запуске ракетоносителей уже в ближайшие годы. При оптимизации конструктивно-баллистических характеристик и различных программ управления потери, вызванные применением системы спасения, не превысят 50% от массы полезного груза, выводимого на низкую круговую орбиту. Внедрение таких многоразовых разгонных блоков, помимо снижения удельной себестоимости, позволит сократить поля падения отработавших частей ракетоносителей и разгрузить производственные линии для последующей реализации других проектов.

Разгонный блок "ДМ" предназначен для применения на РН "Протон-К", "Протон-М" и "Зенит-3"и может быть предложен на РКН «Ангара А5». При выведении КА на геостационарную орбиту РН может работать по двух - или трехимпульсной схеме.При этом в зависимости от заданной долготы стояния спутника на геостационарной орбите меняется время нахождения блока на промежуточных орбитах и соответственно общее время полета, которое может составлять от 7 до 21 часа.Во время полета разгонный блок может функционировать или полностью в автономном режиме, или управляться по радиоканалам с Земли.

Основные массово-габаритные параметры блока следующие:

Максимальная длина – 6,28 м;

Диаметр в средней части - 3,7м;

Диаметр по стыку с РН - 4,1 м;

Масса сухого блока без сбрасываемых элементов - 2200 кг;

Масса КРТ и газов - 15095 кг;

в том числе:

Окислитель - жидкий кислород - 10610 кг,

Горючее - керосин (РГ-1) - 4330 кг.

Конструктивно-компоновочная схема блока представлена на рисунке 7. Основным силовым элементом конструкции является межбаковый отсек, к верхнему шпангоуту которого стыкуется ферма крепления приборного контейнера. Эта же ферма используется и для крепления космического аппарата, который устанавливается на кольцевом шпангоуте, расположенном на внутреннем ярусе фермы. Межбаковый отсек в верхней своей части имеет узлы крепления фермы, к которой присоединен шаровый бак окислителя. К нижней части межбакового отсека пристыкована двухъярусная ферма, которая используется для крепления торового бака горючего и маршевого двигателя.

Бак окислителя, в котором размещается жидкий кислород, содержит внутреннюю арматуру, магистрали заправки и слива, наддува и дренажа, указатель наполнения бака при заправке и внутрибаковые перегородки. Внутри бака размещены два шар-баллона с гелием, который используется для наддува баков, продувок, раскрутки турбин бустерных насосных агрегатов и ряда других целей. Внешняя поверхность бака и расходные магистрали закрыты экранно-вакуумной теплоизоляцией (ЭВТИ) и гермочехлом. Внутренняя-полость под чехлом при подготовке к пуску продувается предварительно осушенным азотом и гелием.

Бак горючего имеет торовую форму и размещен в нижней части разгонного блока.Он закреплен на внешнем ярусе двухъярусной фермы и имеет также дополнительное крепление по внутреннему контуру этой фермы. С целью уменьшения остатков незабора компонента бак горючего наклонен относительно продольной оси на 3 градуса. Внешняя ее поверхность частично закрыта ЭВТИ, а на верхнем его днище и на двухъярусной ферме размешены элементы системы управления и системы телеизмерений, а также арматура ПГС двигателя. ЖРД РД-58М многократного запуска, с турбонасосной системой подачи выполнен по схеме с дожиганием окислительного газа. Он закреплен в карданном подвесе на внутреннем ярусе двухъярусной фермы. Такая установка двигателя позволяет производить управление по каналам тангажа и рыскания. Для управления по крену используется поворотное сопло, работающее на горячем генераторном газе, частично отбираемом после турбины ТНА и обеспечивающем работу турбин бустерных насосных агрегатов окислителя и горючего. Последние располагаются непосредственно на выходе из соответствующих баков. В состав ЖРД РД58М входят также блок многократного запуска и агрегаты автоматики с пневмоуправлснием. Кроме того, на блоке "ДМ" установлены два двигателя системы обеспечения запуска, которые закреплены на нижнем днище бака горючего и предназначены для создания начальной осевой перегрузки. Они работают на гидразине и включаются перед запуском основного ЖРД. Для предотвращения теплового воздействия истекающей газовой струи на элементы конструкции и ЖРД используется донная защита, которая представляет собой сваренный из трубок каркас, обтянутый ЭВТИ. Приборный отсек выполнен в виде герметичного торообразного контейнера.Он закреплен на внутреннем и внешнем ярусах верхней фермы. Контейнер изготовлен разъемным и содержит приборы системы управления, а также воздушно-жидкостную систему терморегулирования. Разгонный блок комплектуется коническим и цилиндрическим переходниками, которые связывают его с РН. При отделении РБ от третьей ступени РН конический переходник отделяется вместе со ступенью, а через некоторое время сбрасывается и цилиндрический переходник.

Блок «ДМ» разработан и производится НПО "Энергия», эксплуатируется с РН «Протон» с 1974 года, а его прототип - блок »Д» - с 1967 года.

Блок «ДМ» существует в двух модификациях: с аппа­ратурой командно-измерительного комплекса, разме­щаемой в приборном отсеке, и без нее, когда для реше­ния задач управления и измерения используется аппара­тура космического аппарата.

Двигатель 11Д58М является представителем семей­ства кислородно-углеводородных ЖРД, разработанных НПО "Энергия» (1970-1973 гг.) для разгонных блоков, обеспечивших реализацию большинства национальных программ исследования космоса.

Компоненты топлива:

Окислитель - жидкий кислород с температурой от минус 194 до минус 177° С;

Горючее - нафтил (керосин) или синтин. Подтвержденная надежность двигателя 0,997 при до­верительном уровне 0.9. Каждый двигатель проходит контрольные испытания без переборки с использовани­ем прогрессивных средств диагностирования техничес­кого состояния.

Жидкостной ракетный двигатель 11Д58М разработан в НПО «Энергия» под руководством Б. А. Соколова. Се­рийно изготавливается на Воронежском механическом заводе.

Рисунок 7 - Разгонный блок «ДМ»:

1 - межбаковый отсек; 2 - ферма крепления приборного отсека, 3-приборный отсек, 4 - внутрибаковые перегородки, 5 - патрубок наддува и дренажа, 6 - указатель наполнения бака при заправке, 7 -баллон с гелием; 8 - сбрасываемый переходный отсек; 9 - бак окислителя; 10- двухярусная ферма; 11 - бак горючего; 12 - блок многократного запуска; 13-карданный подвес двигателя; 14-ЖРД РД-58М; 15-донная тепловая защита; 16-конический переходный отсек.

Рисунок 8 - а – конструктивно-компоновочная схема разгонного блока«ДМ»; б – блок «ДМ» в МИКе космодрома на испытаниях

Блок «ДМ» состоит из:

Маршевого двигателя;

Двух двигательных установок стабилизации и ори­ентации;

Сферического бака окислителя;

Тороидального бака горючего;

Приборного отсека;

Аппаратуры командно-измерительного комплекса;

Отделяемых в полете нижнего и среднего переходников.