Межзвёздный полёт -- путешествие между звёздами пилотируемых аппаратов или автоматических станций. Чаще всего под межзвёздным полётом понимают пилотируемое путешествие, иногда с возможной колонизацией внесолнечных планет.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Основываясь на предвидимых технологиях и ресурсных возможностях, можно дать абрис будущих межзвездных перелетов.

При рассмотрении космического корабля любого назначения удобно разделить его на две части - двигательную установку и полезную нагрузку. Под двигательной установкой принято понимать не только собственно двигатели, но и баки с топливом, необходимые силовые конструкции. Для проблематики межзвездных перелетов именно двигательная установка является ключевым фактором, определяющим осуществимость проекта. Однако проблемы создания двигательной установки выходят за рамки настоящего рассмотрения. Сейчас для нас важно то, что существуют технологии, которые в ходе своего развития могут стать приемлемыми для осуществления межзвездных перелетов. Здесь на первом месте технологии использования инерциального термоядерного синтеза для ракетного движения. На американской установке NIF (National Ignition Facility) для исследования лазерного термоядерного синтеза стоимостью 3,5 миллиардов долларов уже получены результаты, говорящие о том, что ракетный двигатель на данном принципе может быть создан. Еще более мощная установка такого типа строится у нас под Саровом. Эти установки мало похожи на ракетные двигатели, но если их условно "разрезать" пополам, избавиться от фундаментов, стенок и многого ненужного в космосе оборудования, мы получим ракетный двигатель, который может быть доведен и до межзвездного варианта. Не вдаваясь в детали, отметим, что такие двигатели по необходимости будут большими, тяжелыми и очень мощными. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Располагая таким двигателем (а если такого двигателя нет, то и говорить не о чем), можно более свободно себя чувствовать, рассматривая параметры полезной нагрузки. По аналогии, если для велосипедиста лишние 50 кг уже ощутимы, то тепловоз и лишние 50 тонн не заметит.

Вооружившись таким пониманием, мы можем попробовать представить первую межзвездную экспедицию. При этом придется использовать результаты расчетов и оценок, которые сделаны, но здесь, по понятным причинам, воспроизведены быть не могут.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства.

Один корабль - это сотни тысяч тонн полезной нагрузки, миллионы тонн - двигатели, десятки миллионов тонн - топливо. Цифры могут напугать, но, чтобы не сильно пугаться, их можно сравнить с другими крупными строительствами. Давным-давно за 20 лет была построена пирамида Хеопса весом более 6 миллионов тонн. Или уже в наши времена -- в Канаде в 1965 году был построен остров "Норт-Дам". Только грунта потребовалось 15 миллионов тонн, а постройка заняла всего 10 месяцев. Самый большой морской корабль -- Knock Nevis -- имел водоизмещение 825 614 тонн. Строительство в космосе имеет свои специфические трудности, но имеет и некоторые преимущества, например, облегчение силовых элементов из-за невесомости, практическое отсутствие ограничений по массе и размерам (на Земле достаточно большая конструкция просто раздавит сама себя).

Примерно 95% массы межзвездного корабля составит термоядерное топливо. Вероятно, в его качестве будут использоваться бороводороды, топливо -- твердое, баки не нужны, что очень улучшает характеристики корабля и облегчает его постройку. Набирать бороводороды лучше не системе Земля-Луна, а где-нибудь подальше от Солнца, в системе Сатурна, например, чтобы избежать потерь на сублимацию. Время строительства можно оценить в несколько десятков лет. Срок не так уж и велик, а кроме того, теми же строителями параллельно будут вестись и другие работы в рамках освоения Солнечной системы. Строительство лучше начинать с сооружения жилых блоков корабля, в которых и поселятся строители и другие специалисты. Заодно, за время строительства и накопления топлива будет в течение десятилетий проверена стабильность работы замкнутой системы жизнеобеспечения.

Замкнутая система жизнеобеспечения - наверное, второй по сложности вопрос после проблемы двигателей. Один человек потребляет примерно 5 кг воды, еды и воздуха в сутки, если все брать с собой, потребуется больше 200 тысяч тон припасов. Решение - повторное использование ресурсов, так как это происходит на планете Земля.

В полной мере масштаб межзвездных расстояний перелетов можно ощутить, только если заняться рассмотрением средств осуществления таких полетов. Конечно, такое рассмотрение не имеет целью "ощутить расстояние". Не может оно рассматривается и как проектирование конкретной конструкции межзвездных кораблей. Исследование вопросов межзвездных перелетов сегодня носит инженерно-теоретический характер. Нельзя доказать невозможность осуществления межзвездных перелетов, но и никому не удалость доказать их осуществимость. Выход из ситуации не прост - надо предложить такую конструкцию межзвездных кораблей, которая была бы воспринята инженерно-научным сообществом, как реализуемая.

Полеты одиночных межзвездных кораблей, являющиеся правилом в фантастической литературе, исключаются, возможен перелет только эскадры кораблей, примерно с десяток аппаратов. Это требование безопасности, а кроме того - и обеспечение разнообразия жизни за счет общения между экипажами разных кораблей.

Поле завершения строительства эскадры она перемещается к запасенным запасам топлива, стыкуется с ними и направляется в полет. По всей видимости, разгон будет очень медленным и в течение года-двух более мобильные аппараты смогут забросить на корабли то, что позабыли, и снять с борта передумавших.

Перелет продлится 100-150 лет. Медленный разгон с ускорением примерно в сотую долю земного в течение десятка лет, десятки лет полета по инерции, и несколько более быстрое, чем разгон, торможение. Быстрый разгон существенно сократил бы время перелета, но он не возможен из-за неизбежно большой массы двигательной установки.

Перелет не будет столь насыщен космическими приключениями, как описано в фантастической литературе. Внешних угроз практически нет. Облака космической пыли, завихрения пространства, провалы во времени - вся эта атрибутика угрозы не представляет ввиду ее отсутствия. Даже тривиальные метеориты крайне редки в межзвездном пространстве. Основная внешняя проблема - галактическое космическое излучение, космические лучи. Это изотропный поток ядер элементов, имеющих большую энергию и, следовательно, высокую проникающую способность. На Земле от них нас защищает атмосфера и магнитное поле, в космосе, если полет длительный, надо принимать специальные меры, экранировать жилую зону корабля так, чтобы доза космического излучения не сильно превышала земной уровень. Здесь поможет простой конструктивный прием - запасы топлива (а они очень большие) располагаются вокруг жилых отсеков и экранируют их от радиации большую часть времени перелета.

Полет к звездам

С самого начала было ясно, что пространство Солнечной системы, ее планеты находятся в пределах досягаемости космических аппаратов и кораблей, которые могут быть созданы при современном уровне техники и знаний, и, следовательно, люди смогут если не высадиться, то, во всяком случае, добраться или дотянуться до любой из ее планет.

Но одновременно стало проясняться, что дома, в Солнечной системе, мы сможем получить данные о планетах, астероидах, кометах, об их особенностях, возможно, об их происхождении, но не больше. Скорее всего, в Солнечной системе вообще ничего неожиданного, принципиально нового мы не узнаем. Маловероятно, чтобы по данным, полученным в путешествиях по нашей Солнечной системе, мы сможем существенно продвинуться вперед в понимании мира, в котором мы живем.

Естественно, мысль обращается к звездам. Ведь раньше подразумевалось, что полеты около Земли, полеты к другим планетам нашей солнечной системы не являются конечной целью. Проложить дорогу к звездам представлялось главной задачей. Недаром, хотя и несколько преждевременно, американцы назвали своих космонавтов астронавтами, то есть звездоплавателями.

Это рождало мысли о звездных кораблях, и поэтому возникло само название «космический корабль». Мы, создатели, назвали его космолетом. Королев не принял это название. Сейчас уж и не припомню, когда и кто из нас предложил назвать нашу будущую машину кораблем. Но хорошо помню, как однажды мне показали фотомонтаж, перепечатанный из какого-то иностранного журнала: каравелла на фоне туманности Конская Голова, улетающая на всех парусах вдаль! Корабль! Это как раз то, что отвечало нашим устремлениям.

Рано или поздно человеческая мысль должна была вернуться к звездным кораблям. Какими они должны быть? Какие проблемы нужно решить, чтобы звездные полеты стали реальностью?

Если говорить об автоматических космических аппаратах, направляемых к ближайшим звездам, то в принципе эта задача не представляется неразрешимой.

Но размышления и простые оценки параметров кораблей для полетов людей к звездам показывают, что, пытаясь решить задачу осуществления звездных полетов, мы сталкиваемся с принципиальными трудностями.

Первая проблема - время. Даже если бы мы умудрились построить звездный корабль, который сможет летать со скоростью, близкой к скорости света, время путешествий только по нашей Галактике будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр ее составляет около 100 000 световых лет. А полеты за пределы галактики потребуют во много раз больше времени. Так что ограничимся при рассмотрении задачи путешествий к звездам только нашей Галактикой.

Представим, что наука сумеет замораживать космонавтов на какое-то количество лет, с тем чтобы они «ожили», прибыв к цели назначения, или отправлять в путешествие человеческие зародыши. И даже если решить эту проблему не только технически, но и в моральном плане, то ведь после путешествия они вернутся в совершенно чужой для них мир. Достаточно вспомнить об изменениях, произошедших за последние 200 лет (а здесь речь идет о десятках тысячелетий!), и становится ясно, что после возвращения космонавты окажутся в совершенно незнакомом мире: полет к звездам практически всегда будет полетом в одну сторону. Для окружающих, родных, друзей космических путешественников это будет чем-то вроде проводов родного человека в последний путь.

Вторая проблема - опасный поток частиц, газа и пыли. Пространство между звездами не пустое. Везде есть остатки газа, пыли, потоки частиц. При попытке движения со скоростью, достаточно близкой к скорости света, они создадут поток частиц высокой энергии, который будет воздействовать на корабль и от которого практически невозможно будет защититься.

Третья проблема - энергетика. Если в ракетном двигателе корабля использовать наиболее эффективную термоядерную реакцию, то для путешествия в оба конца со скоростью, близкой к скорости света, даже при идеальной конструкции ракетной системы, требуется отношение начальной массы к конечной не менее, чем десять в тридцатой степени, что представляется нереализуемым.

Что же касается создания фотонного двигателя для звездного корабля, использующего аннигиляцию материи, то здесь пока маячат сплошные проблемы (хранение гигантских запасов антивещества, защита конструкции корабля и зеркала фотонного двигателя от выделяемой энергии и от той части антивещества, которая не подвергнется аннигиляции в двигателе, и прочее), и не видно решения ни одной из них.

Но предположим даже, что нам удастся сделать фотонный двигатель. Попробуем представить себе галактический фотонный корабль, способный летать со скоростью, достаточно близкой к скорости света, чтобы снять проблемы времени. Собственное время полета космонавтов туда и обратно в путешествии на расстояние порядка половины диаметра нашей Галактики при оптимальном графике полета (непрерывный разгон, а затем непрерывное торможение) составит (по часам на корабле) около 42 лет при полете с ускорением (разгона или торможения), равным земному ускорению силы тяжести. По часам на Земле при этом пройдет около 100 000 лет.

Предположим, что нам удалось получить идеальный процесс в фотонном двигателе, сделать идеальную конструкцию с нулевой массой баков (чего, конечно, быть не может, но это только означает, что на самом деле результаты будут значительно хуже), и попробуем оценить некоторые параметры такого идеального корабля для полета примерно на половину диаметра Галактики. Оказывается, что отношение начальной массы корабля к конечной составит порядка десяти в девятнадцатой степени! Это означает, что при массе жилых и рабочих помещений и оборудования (то есть всего того, что везет корабль), равной всего 100 тоннам, стартовая масса окажется больше массы Луны. Причем половина этой массы - антивещество. Откуда его взять? Как передавать на него усилие для разгона?

Из сегодняшних представлений о мире складывается впечатление, что решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света, нельзя, бессмысленно ломиться через пространство и время с помощью механической конструкции.

Нужно найти способ межзвездных путешествий, не связанный с необходимостью транспортировки материального тела. Эта идея давно используется в фантастической литературе (что само по себе не должно смущать, так как не раз глобальные научные цели впервые формулировались в сказках, в фантастической литературе) - идея о путешествиях разумных существ в виде пакета информации.

Электромагнитные волны распространяются практически без потерь во всей наблюдаемой Вселенной. Возможно, здесь и кроется ключ к разгадке тайны межзвездных перелетов.

Если не впадать в мистику, то следует признать, что личность современного человека нельзя отделить от тела. Но можно представить себе специально сконструированного индивидуума, у которого личность может отделяться от тела, аналогично тому, как математическое обеспечение может быть отделено от конструкции современных электронных вычислительных машин.

Личность - это индивидуальный комплекс особенностей данного человека в его восприятии внешнего мира, в его алгоритмах обработки информации и реакциях на принимаемую информацию, в его воображении, симпатиях и антипатиях, в его знаниях.

Если пакет информации, являющийся полным описанием личности, может быть переписан с ее полей оперативных операций и запоминающих устройств, то этот пакет информации может быть и передан по линии связи на приемную станцию назначения и там переписан в стандартный материальный носитель (или выбираемый по прейскуранту, или…), в котором путешественник уже на месте сможет жить, действовать, перемещаться, удовлетворять свое любопытство.

Во время передачи пакета информации личности такой индивидуум не живет. Чтобы он мог существовать, действовать, его личность (пакет информации) должна быть размещена в материальном носителе. Его личность, если угодно - его дух, может существовать только на материальных полях операций и запоминающих устройств.

Такой способ решения задачи полета к звездам стал бы реализацией не только сюжетов современной фантастики, но и древних мифов, сказок, преданий о вознесении на небо и о свержении в ад, о летающей посуде и о мирах, где люди то появляются, то исчезают, о переселении душ. Возможно, тогда разрешились бы философские споры о человеке, о бренности его телесной оболочки и сути бытия. Что есть человек? Что есть истина?

Интересно, что выдающиеся философы в разные исторические периоды, от античности до нашего времени, путем логического анализа (основанного, кстати, не на знании) приходили к вполне современным представлениям о соотношении между внутренней сущностью и телом человека. Жизнь человека - это жизнь его души, это бьющаяся в беспомощных усилиях мысль о себе (что есть я?), о мире вне себя и в себе, эстетическое наслаждение красотой и отторжение примитива и неправды, это свобода мысли и анализа. Мы здесь, мы живем, пока способны размышлять, оценивать, перерабатывать информацию и генерировать ее. Остальное во мне, тело мое - для обслуживания.

Наш мозг - поле математических операций с символами, числами, понятиями, правилами и алгоритмами. Эти операции обеспечивают синтез поступающей информации и ее анализ. Сложившиеся в конкретном человеке алгоритмы обработки, анализа и оценки информации определяют его эстетику и самовосприятие, его ощущение собственного существования. Конечно, эти операции выполняются по определенным для данного человека правилам. Эти правила постепенно формируются в мозге индивидуума (в результате его опыта получения и переработки информации, опыта собственной деятельности и ее оценки) и записываются на полях математических операций и на запоминающих устройствах его мозга. Причем с течением жизни эти правила могут совершенствоваться, меняться (как меняется сам человек со временем), портиться. Записанные на материальном носителе, они как бы становятся материальными. Но сами эти операции, мысли, переживания есть нечто такое, чего нельзя увидеть, «пощупать». Человек во все времена пытался материализовать это нечто в виде звуков, слов, красок. Но всегда попытка самовыражения оказывалась лишь тенью, слабым эхом этого нечто.

Тело - это обслуживающие системы поля математических операций (питание, очистка, перемещения, средства связи с внешним миром и тому подобное). Но подавляющее большинство людей, почти все и почти всегда, не различали свое «я» и свое тело. И всегда стремились получше устроить свое тело.

В этом есть логика: без питания умирает головной мозг, распадается поле операций, исчезает личность. В здоровом теле «компьютер» работает с меньшим количеством сбоев, с большей скоростью (за счет параллельно идущих операций, и вообще за счет лучших алгоритмов), обеспечивает большую внутреннюю устойчивость к внешним угрозам и осложнениям. И главное - обеспечивает ясность мышления.

Может быть, поэтому стремление ублажить свое тело из поколения в поколение оставалось главной движущей силой человеческого рода. Оно определяло и грабительские походы, и создание новых технологий, и стремление к лучшей организации жизни общества (в том числе и методом «ограбим богатых», замаскированным лозунгом «долой эксплуатацию»). Дома, автомобили, самолеты, газ, электричество, вычислительная техника родились из этого стремления. Стремление обеспечить максимум удобств телесной оболочке было и остается до сих пор главным движителем в жизни людей.

А ведь на самом деле это вторично. Наше «я», наша индивидуальность, наша суть, наше бытие - это не материальная оболочка. И нет ничего противоречащего нашему восприятию мира, в мысли о принципиальной возможности разделения индивидуальности и ее материального носителя.

Поэтому с инженерной точки зрения представляется возможным сконструировать такого человека, душа которого может отделяться от тела, а возможно, и сконструировать мир, где человек практически мгновенно (скажем, в пределах Солнечной системы) может перемещаться с одной планеты на другую.

Допустимо ли создавать такое существо? Имеем ли мы на это право? Какие стимулы жизни мы можем предложить ему? Именно в этих вопросах главная проблема.

Мы, скорее всего, продукт органической эволюции. В нас глубоко заложен инстинкт жизни, инстинкт продолжения рода. Когда с возрастом, здоровьем, условиями жизни умирает этот инстинкт, у человека пропадает желание жить. А какой же стимул жизни мы сможем предложить нашему творению? Любопытство? Желание быть полезным людям, создавшим его тело (бренное и сменяемое) и воспитавшим его личность и душу? Желание выявиться в исследованиях мира, в сверхдальних путешествиях, в создании приемопередающих станций для путешествий, в строительстве космических околозвездных баз?

Убедительны ли эти стимулы? Откуда ему взять привязанность и любовь к ближним? Как воспитать его, чтобы он не оказался монстром с нелепыми и бессмысленными устремлениями к власти, к возможности давать указания, воспитывать и слыть благодетелем? Или наоборот, чтобы он не оказался инфантильным безынициативным существом, равнодушным к миру, к ближним и к самому себе?

И конечно, на пути создания подобного существа встают громадные технические проблемы. Как мы мыслим? Как создаются стереотипы наших реакций, поведения, оценок, как рождается наша индивидуальность? Скорее всего, алгоритмы восприятия окружающего мира, анализа, мышления возникают в каждом человеке заново и, в той или иной степени, по-иному. Их характер определяется генами, средой, структурой общества, радостями и огорчениями его детства. В обществе рабов вырастают рабы, в обществе свободных людей - независимые, уважающие собственное достоинство индивидуальности. С этой точки зрения, очень опасны стандартизированные приемы воспитания: ясли, детские сады, школы. Это самое страшное, что можно сделать для своего будущего. Человечество может быть сильно только разнообразием, индивидуальностями. Конечно, некоторые основы заветы, заповеди - должны быть общими для всех: люби ближнего своего, не укради, не убей, не пожелай… Но формировать человека по стандарту - готовить собственную гибель.

Как, не разобравшись во всех этих вещах, приступать к созданию искусственного интеллекта? Нас ждут на этой дороге неизбежные трагические ошибки и неудачи. Но эта идея уже вошла в сознание самых любопытных и предприимчивых. Надо полагать - это дело будет развиваться.

Появятся и более понятные трудности.

Если «передавать личность» на галактические расстояния, то придется создавать антенны с размерами порядка километров и передатчики с мощностью порядка сотен миллионов киловатт. Но для реализации такого способа галактических путешествий необходимо не только создать нового космического человека, у которого личность может быть отделена от тела, от материального носителя и в виде пакета информации передана через канал связи, но и создать приемные и передающие станции (например, в радиодиапазоне), развезти их (например, с помощью автоматических космических аппаратов) к возможным пунктам назначения (расположенным, как правило, невдалеке от какой-либо звезды для обеспечения приемопередающих станций энергией). При этом можно развозить приемопередающие станции, а можно только технологию, минимальный набор инструментов и роботов для изготовления их на месте назначения.

Но доставка станций со скоростями порядка сотен и даже тысяч километров в секунду к звездам, находящимся от нас на расстояниях десятков световых лет, потребует тысячелетий и десятков тысячелетий. За это время может быть утерян интерес к самому предприятию.

Тем не менее этот путь лежит в рамках возможного.

Можно представить и другой путь осуществления звездных путешествий космическим человеком: через выход на связь с другими цивилизациями.

Собственно в налаживании обмена информацией во время путешествия будет участвовать все человечество. Информация, полученная из другого мира о нем, о его обитателях, их жизни, и переданная информация туда о нашей жизни и будет путешествием всего человечества к звездам.

И снова возникает тот же вечный вопрос: как выйти на связь с другими цивилизациями?

Логичный путь: заявить о себе, создать и включить маяк, получить запрос и вступить в связь. Если исходить из идеи создания импульсного радиомаяка, излучающего во все стороны (например, вдоль плоскости Галактики), получающего энергию от Солнца с помощью солнечных батарей мощностью миллиард киловатт (оценка проведена применительно к маяку с полосой частот всего 100 герц), то от абонентов, ищущих маяки, потребуется создание приемных антенн с диаметрами от 1 до 10–20 километров для поиска на расстояниях, соответственно, от одной до пятидесяти тысяч световых лет. Мощность в миллиард киловатт можно получить от солнечных батарей с размерами порядка 100 на 100 километров. Гигантские размеры, но вполне обозримые. Конструкцию таких солнечных батарей можно представить в виде ферменной платформы с натянутыми на ней пленочными солнечными батареями.

Если говорить о связи с цивилизациями, удаленными от нас на тысячи или десятки тысяч лет, то сроки выхода на связь с другими цивилизациями будут, соответственно, тысячи и десятки тысяч лет. Уже не миллионы, но все равно очень долго.

Может ли быть более короткий путь? Возможно. Если какие-то другие цивилизации избрали этот путь налаживания связей в нашей Галактике, то они могли уже создать и включить свои маяки. Значит, нам надо искать эти маяки, строить приемные антенны, способные принять сигналы галактических маяков. Радиотелескопы с антеннами, размеры которых измеряются километрами, уже в ближайшие десятилетия можно строить на околоземных орбитах и на орбитах спутников Солнца.

Время выхода на прием сигналов других цивилизаций будет определяться временем создания больших космических радиотелескопов и временем поиска сигналов маяков. Но где искать? Может быть, вблизи центра Галактики, может быть, вдоль средних линий спиральных рукавов Галактики, может быть в шаровых звездных скоплениях, поблизости от галактической плоскости. Или около звезд с планетными системами. Так или иначе, но это уже десятилетия, а не тысячи и не миллионы лет.

Нет ли более простого выхода на связь с другими цивилизациями?

Предположим, что представители других цивилизаций уже были (или есть?) на Земле или в Солнечной системе. Как их найти, каковы могут быть следы их деятельности? Где могут располагаться их приемопередающие станции?

Тут можно выделить два направления поиска.

Сами космические существа, какими они могут быть? Размеры, особенности их жизни. Им, наверное, не нужна атмосфера и органика для питания, а космос - это их естественная среда обитания? Как их найти? Почему они не выходят на контакт с нами? Поиски ответов на эти вопросы и есть первое направление.

Второе направление связано с поисками их средств связи, поисками станций приема и отправки путешественников.

Размышления о проблеме полетов к звездам позволяют выделить несколько перспективных направлений работ: создание все более и более крупных радиотелескопов, разработка космических роботов, разработка конструкции и идеологии маяков, чтобы найти наиболее эффективный метод их поиска, исследование возможности создания и разработка искусственного интеллекта, поиск каналов связи других цивилизаций в Солнечной системе. Эти направления вполне увязываются с современными нуждами человечества.

Работы по искусственному интеллекту сопряжены с решением задачи создания достаточно эффективных роботов, которые могли бы заменить людей в опасных производствах, избавить их от труда в шахтах, от рутинной работы, которые помогли бы нам в освоении подводного мира, в строительстве. Создание больших радиотелескопов позволит вести наиболее эффективные исследования Вселенной и на ее границах, и в центре Галактики.

Цель таких размышлений на уровне фантастики - заглянуть вперед, чтобы выбрать дальние перспективы, которые стоят перед нами, чтобы определить направления поиска, сверить их с актуальными проблемами экологии и экономики, обустройства жизни людей на Земле, с интересными на сегодня задачами исследований Вселенной, и из этого анализа выявить направления работ, на которые стоит тратить общие средства, энергию и интеллект людей. Это стоит делать для того, чтобы взвешенно и разумно принимать решения о выборе.

А какие идеи, цели оставим потомкам мы? Не подпускать близко к власти тиранов, авантюристов и просто проходимцев? Но это было понятно людям еще в древние времена. Правда, реализовать это понимание, как правило, не удавалось. Идея чистой земли - без зловонных мертвых рек, без пустынь (вместо лесов), без радиационных проплешин на живом теле планеты? Это осознали люди еще в конце XIX века. Может быть, наш завет потомкам - полеты к звездам и поиски связи с другими цивилизациями? Эти идеи родились в фантастической литературе XX века. Разобраться, а как же все-таки устроен наш мир, наша Вселенная - этим озабочено человечество много веков. А может, все уже завещано нам, и наша задача - попытаться на своем временном витке развития человечества воплотить поставленные перед землянами цели?

Из книги Пилотируемые полеты на Луну автора Шунейко Иван Иванович

Полет с постоянным углом наклона траектории Рассматривая движение ракеты по траектории с постоянным углом наклона в постоянном гравитационном поле, предположим, что тяга, расход топлива и удельный импульс являются линейными ограниченными функциями соотношения

Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

Полет с переменным углом наклона траектории В практических случаях угол наклона траектории полета ракеты меняется со временем, и оптимальная величина удельного импульса не является постоянной для всего полета. Меньший удельный импульс при большей тяге выгоден на

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Полет с изменяющимся временем (класс 2). Как следует из рис. 31.3, время запуска для задачи, относящейся к классу 2, определяется существенно проще. Времена запуска для первой и второй возможностей в случае в (рис. 31.3) не являются одинаковыми из-за прецессии орбиты к моменту

Из книги Взлёт 2006 12 автора Автор неизвестен

Из книги Шелест гранаты автора Прищепенко Александр Борисович

Первый и последний полет «Бурана» Программа первого полета орбитального самолета, за которым оставалось название «Буран», неоднократно пересматривалась.Предлагались трехсуточный и двухвитковый варианты. По первому варианты особые трудности могло вызвать то, что не

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

Проект «Ноев ковчег», или НАСА на пути к звездам На ежегодной встрече членов Американской ассоциации развития науки, проходившей в феврале 2002 года, представитель НАСА заявил, что это агентство собирается отправить за пределы Солнечной системы «корабль поколений» с

Из книги Взлет 2008 01-02 автора Автор неизвестен

«Полет» на Марс стартует через год В рамках подготовки к проведению рассчитанного на 500 дней уникального эксперимента по моделированию пилотируемого полета на Марс (программа «Марс-500»), начало которого запланировано на 4-й квартал 2007 г., продолжается набор добровольцев.

Из книги Крылья Сикорского автора Катышев Геннадий Иванович

5.6. Полет с грузом взрывчатки. Встреча с «черной вдовой» Под сладкий звук фанфар первых успехов, начались сборы в Нальчик. Помимо команды испытателей, самолет ВВС должен был доставить туда сборки Е-9 и более шестисот килограммов взрывчатки: пластита, с консистенцией,

Из книги ВЗЛЁТ 2011 06 автора Автор неизвестен

§ 5.11 Космические лучи - путь к звёздам …Планета есть колыбель разума, но нельзя вечно жить в колыбели. …Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе всё околосолнечное

Из книги Траектория жизни [с иллюстрациями] автора Феоктистов Константин Петрович

В полет спустя… 45 лет! Неожиданный сюрприз подготовила перед Новым годом ценителям истории отечественной авиации группа энтузиастов из КБ «Современные авиационные технологии». Обитатели ЛИИ им. М.М. Громова и окрестных дачных поселков с большим удивлением для себя

Из книги 100 великих достижений в мире техники автора Зигуненко Станислав Николаевич

ПЕРВЫЙ ПОЛЕТ Утро 3 июня 1910 г. выдалось в Киеве тихим и безоблачным. Дул легкий ветерок. Вся команда была в сборе. БиС-2 выкатили из ангара. Игорь занял место пилота. «Контакт!» Мотор сразу заработал. После прогрева пилот дал максимальный газ. Три человека едва удерживали

Из книги Взлёт, 20013 №11 автора

MRJ первый полет - через год Минувший год не привнес каких бы то ни было существенных изменений в программу первого японского регионального реактивного самолета MRJ, создаваемого компанией «Мицубиси Эркрафт Корпорейшн». 15 сентября 2010 г. руководство «Мицубиси» объявило о

Из книги автора

Первый полет Мы стремились при разработке корабля «Восток» сделать его не только быстро, быстрее американцев (они уже объявили, что будут разрабатывать космический корабль), но, главное, сделать его надежным. Достаточно тривиальная постановка задачи. Но как этого

Из книги автора

Полет фоссета вокруг света В марте 2005 года известный американский бизнесмен и путешественник Стив Фоссет, как известно, установил новый рекорд. Ранее он облетел земной шар в одиночку на воздушном шаре, потом проделал то же самое и на самолете за 67 часов и 2 минуты. Как ему

Из книги автора

«Добролёт» спешит в полёт В 2014 г. давно вынашиваемые «Аэрофлотом» планы по созданию бюджетного авиаперевозчика должны, наконец, превратиться в реальность.10 октября было объявлено, что в группе компаний «Аэрофлот» появился свой лоукостер. Новый отечественный

Из книги автора

Анатолий Юртаев: «год прошел, полет нормальный!» Руководитель авиакомпании «Ангара» об эксплуатации Ан-148 Прошел год с того времени, как один из основных региональных авиаперевозчиков в Восточной Сибири, авиакомпания «Ангара» (входит в группу компаний «Истлэнд»), стала

Перед каждым собаководом всегда встает вопрос о покупке ошейника. Правильный выбор ошейника важен для комфортного общения с собакой. Плохо подобранный ошейник может стать причиной опасной ситуации или привести к проблемам во взаимопонимании хозяина и его собаки.

Виды ошейников

Ошейники делятся на несколько видов в зависимости от их практического назначения:

  • Повседневные,
  • Ошейники для дрессировки и коррекции поведения,
  • Выставочные
  • Декоративные.

Для обычных прогулок с собакой подойдут повседневные ошейники. «Воспитательные» ошейники позволяют сильнее воздействовать на собаку. Ошейники для выставок практически не заметны и сохраняют красоту шерсти животного. Декоративные ошейники же надевают только ради красоты и радости владельца.

Каждый из перечисленных видов ошейников имеет свои плюсы и недостатки, которые нужно учитывать при покупке. Итак, приступим.

Повседневные ошейники

Повседневные или прогулочные ошейники наиболее распространены, они есть у каждой собаки. Такой ошейник имеет стандартную модель с одним полукольцом и удобен тем, что использовать его можно для собак почти , нужно лишь подобрать правильный размер. Повседневный ошейник может быть сделан из кожи, брезента или нейлона. При покупке лучше убедиться в том, что поводковое кольцо крепкое и хорошо прикреплено к основе ошейника.

Кожаные ошейники

Самым распространенным считается ошейник из кожи. Выбирая такой ошейник, не стоит отдавать предпочтение изделию из мягкой кожи, так как он может растянуться. Также при выборе стоит учитывать то, что влага портит кожу, поэтому лучше выбирать ошейник с обработанными краями.

Ошейник может состоять из одного слоя кожи (слишком тонкий, может растягиваться, а также будет легче рваться) или из двух слоев кожи. С изнаночной стороны может быть покрыт мягкой тканью. Приобретая ошейник с металлическими декоративными украшениями, стоит убедиться в том, что они прочно закреплены и не представляет угрозы для животного.

Некоторые собаки грызут кожаные ошейники, поэтому держать их в досягаемости четвероногого друга не рекомендуется. Также помните, что от воды или жары кожа может трескаться.

Брезентовые ошейники

Такой ошейник, в отличие от кожаного, не боится влаги. Однако брезентовый ошейник хорошо удерживает влагу в себе, то есть становится тяжелым. Может гнить, если его не сушить.

Он достаточно эластичный и прочный, его можно стирать и при этом он имеет довольно низкую цену. Главным минусом брезентового ошейника является то, что при появлении любого повреждения он начинает рваться. При больших или постоянных нагрузках он разорвется совсем. Брезентовый ошейник — отличный вариант для «походных» прогулок по полям и лесам.

Нейлоновые ошейники

Легкий и прочный ошейник, который комфортен для собаки. Нейлон не растягивается, не реагирует на воду и не выцветает на солнце. Данный вариант является наиболее оптимальным для . Для собак не подходит, так как чаще всего оснащен пластмассовой застежкой, которая может не выдержать силы рывка крупного пса.

Одной из разновидностей ошейников из нейлона являются плетеные ошейники из паракорда (прочного нейлонового шнура). Это и не удивительно — они прочные и достаточно яркие и красивые.

В целом, нейлоновые ошейники надежные, служат долго и не теряют своего качества со временем.

Ошейники для дрессировки и коррекции поведения

Ошейники для дрессировки можно разделить на три вида:

  • Строгий ошейник (парфорс)
  • Удавка
  • Электроошейник.

Данные ошейники не используют в повседневной жизни, но часто бывают ситуации, когда без них не обойтись во время воспитательного процесса. Особенно это касается коррекции поведения взрослых собак с «запущенным воспитанием». Чтобы добиться нужного эффекта, необходимо уметь правильно использовать такие виды ошейников.

Важно! Использование любых ошейников для коррекции поведения лучше осуществлять под присмотром опытного инструктора-дрессировщика.

Строгий ошейник (парфорс)

Эффект достигается за счет наличия шипов на внутренней стороне ошейника. Строгий ошейник делится на два вида: проволочный и пластинчатый. Основная разница между ними – размер шипов. Пластинчатые парфорсы обычно имеют более короткие шипы, нежели проволочные.

Размер шипов подбирают в зависимости от длинны шерсти собаки (чем длиннее шерсть, тем длиннее шипы). Важно правильно подобрать размер строгого ошейника. Количество звеньев парфорса должно быть таким, чтобы ошейник располагался как можно ближе к ушам собаки. Размер ошейника корректируется убиранием лишних звеньев.

Важно! Строгий ошейник нельзя использовать постоянно! Он может травмировать животное, кроме того, собака привыкает к постоянному дискомфорту и перестает на него реагировать. Используйте парфорс только в случае необходимости коррекции поведения под присмотром инструктора.

Удавка

Такой вид ошейника выглядит как петля, состоящая из металла, кожи или веревки. Действует за счет натяжения петли: чем больше натянут поводок, тем больше удавка затягивается на шее собаки. Это не доставляет собаке боли, но заставляет ее реагировать на натяжение поводка.

Наиболее безопасным считается кожаная удавка, однако кожа требует ухода. Минусом удавки является то, что при резком рывке можно травмировать собаку.

Выбирая такой вид ошейника, не стоит покупать слишком длинную удавку, так как есть риск, что собака снимет ее.

Электроошейник

Электроошейник позволяет контролировать собаку с помощью электрических импульсов, которые подаются на шею собаки через пульт, находящийся у хозяина.

Покупая электроошейник, стоит обратить внимание на радиус действия, мощность (делится в зависимости от размеров собаки) и уровни стимуляции. Кроме того, электроошейник может быть оснащен звуковым сигналом, помогающим найти собаку.

В отличие от других видов ошейника для коррекции поведения, электроошейник помогает управлять собакой на расстоянии. Наиболее подходит для остановки нежелательных действий собаки, когда она спущена с поводка. Также незаменим в розыскной подготовке.

К минусам электроошейника можно отнести высокую стоимость и вероятность неадекватной реакции у собак с неустойчивой психикой. Как и все виды коррекционных ошейников не должен использоваться постоянно!

Выставочные ошейники

Ошейник для выставок должен быть как можно менее заметным, его задача максимально красиво и естественно показать собаку в ринге на , при этом не привлекать к себе внимания. Выставочные ошейники выбираются в зависимости от размера, окраса и типа шерсти собаки.

Делятся выставочные ошейники на два вида:

  • Ринговки
  • Удавки.

Ринговки делаются из тонкого нейлонового шнура или кожи, могут быть различных цветов (цвет подбирают в зависимости от цвета шерсти собаки). Удавка же представляет собой тонкую цепочку либо тот же нейлоновый шнур.

Основное различия между удавкой и выставочной ринговкой заключается в том, что размер удавки не фиксирован, она может затягиваться хендлером (человеком, который выставляет собаку в ринге), тем самым хендлер оказывает корректирующее влияние на собаку. По этой причине в последнее время на крупных международных выставках удавки все чаще запрещаются к использованию.

Декоративные ошейники

Этот вид ошейников используются лишь как украшение и не обладает никакой функциональностью, таким образом, такие ошейники не могут быть использованы для контроля собаки.

Декоративные ошейники могут быть изготовлены из любого материала. В основном они предназначены для маленьких пород собак.

Как выбрать размер ошейника для собаки

Чтобы правильно подобрать ошейник, нужно определить толщину шеи любимца. Поскольку ошейник не прилегает к коже плотно, нужно прибавлять несколько сантиметров в зависимости от вида ошейника.

Расположение ошейника на шее может различаться в зависимости от вида ошейника:

  • Для повседневных ошейников достаточно прибавления 5 см, измерение проводят ближе к основанию шеи.
  • Удавки потребуют немного большей прибавки – 6 см.
  • Строгий ошейник носится выше, максимально близко к ушам собаки. Его лучше взять чуть длиннее, так как лишние звенья всегда можно снять, а вот слишком короткий ошейник не будет правильного давления на собаку.

Для правильности измерения собака должна стоять или сидеть. Измерительная лента не должна провисать или быть слишком затянутой.

Общепринятые размеры ошейников:

  • S (декоративные, до 35 см),
  • SM (маленькие охотничьи и служебные, 35-41 см),
  • M (средние, 41-48 см),
  • ML (крупные, 48-55 см),
  • L (большие, более 55 см).

Какой ошейник выбрать щенку

Выбирая ошейник для щенка, который уже готов начать прогулки, нужно сделать ударение на легкость ошейника.

Для чувствительного малыша лучше выбрать кожаный ошейник со стальным креплением, который точно не вызовет аллергическую реакцию.

Также щенкам можно купить мягкий ошейник, у которого легко регулируется размер за счет пряжки (обычно это ошейники из нейлона). Внимания требует и ремешок ошейника, который может мешать щенку.

Ошейник очень важен как для собаки, так и для человека. Правильно подобранный ошейник сможет радовать глаз хозяина, сделать прогулку приятной и не навредит собаке. А это означает, что нужно выделить время на подбор лучшего ошейника для вашего четвероногого друга.