В курсе школьной арифметики все математические операции проводятся с вещественными числами. Множество этих чисел (или непрерывное упорядоченное поле) имеет ряд свойств (аксиом): коммутативность и ассоциативность умножения и сложения, существование нуля, единицы, противоположного и обратного элементов. Также аксиомы порядка и непрерывности, применяемые для сравнительного анализа, позволяют определить все свойства вещественных чисел.

Поскольку деление является операцией, обратной умножению, при делении на ноль вещественных чисел неизбежно возникновение двух неразрешимых проблем. Во-первых, проверка результата деления на ноль при помощи умножения не имеет числового выражения. Каким бы числом не было частное, если его умножить на ноль, делимое получить невозможно. Во-вторых, в примере 0:0 ответом может служить абсолютно любое число, которое при перемножении с делителем всегда обращается в ноль.

Деление на ноль в высшей математике

Перечисленные трудности деления на ноль привели к наложению табу на эту операцию, по крайней мере, в рамках школьного курса. Однако в высшей математике находят возможности обойти этот запрет.

Например, за счет построения другой алгебраической структуры, отличной от знакомой всем числовой прямой. Примером такой структуры является колесо. Здесь существуют свои законы и правила. В частности, деление не привязано к умножению и превращается из бинарной операции (с двумя аргументами) в унарную (с одним аргументом), обозначается символом /х.

Расширение поля вещественных чисел происходит за счет введения гиперреальных чисел, которое охватывает бесконечно большие и бесконечно малые величины. Такой подход позволяет рассматривать термин «бесконечность» как некое число. Причем это число при расширении числовой прямой теряет свой знак, превращаясь в идеализированную точку, соединяющую два конца этой прямой. Такой подход можно сравнить с линией смены дат, когда при переходе между двумя часовыми поясами UTC+12 и UTC-12 можно оказаться в следующем дне или же в предыдущем. При этом становится верным утверждение х/0=∞ для любых х≠0.

Чтобы устранить неопределенность 0/0, для колеса вводится новый элемент ⏊=0/0. При этом в данной алгебраической структуре есть свои нюансы: 0·х≠0; х-х≠0 в общем случае. Также х·/х≠1, поскольку деление и умножение больше не считаются обратными операциями. Но данные особенности колеса хорошо объясняются с помощью тождеств дистрибутивного закона, действующего в такой алгебраической структуре несколько иначе. Более подробные разъяснения можно найти в специализированной литературе.

Алгебра, к которой все привыкли, является, по сути, частным случаем более сложных систем, например, того же колеса. Как видим, делить на ноль в высшей математике можно. Для этого требуется выйти за границы привычных представлений о числах, алгебраических операциях и законах, которым они подчиняются. Хотя это вполне естественный процесс, сопровождающий любой поиск новых знаний.

  • Tutorial

Моя трёхлетняя дочка София в последнее время частенько упоминает «ноль», например, в таком контексте:

- Соня, вот ты вроде сначала не послушалась, а затем послушалась, что же получается?..
- Ну… ноль!

Т.е. ощущение отрицательных чисел и нейтральности нуля уже имеет, о как. Скоро поинтересуется: почему же это на ноль делить нельзя?
И вот решил я простыми словами записать всё, что я ещё помню про деление на ноль и всё такое.

Деление вообще лучше один раз увидеть, чем сто раз услышать.
Ну, или один разделить на икс раз увидеть…

Тут сразу видно, что ноль - это центр жизни, вселенной и всего такого. Ответом на главный вопрос про всё это пусть себе будет 42, а вот центр - по-любому 0. У него даже знака нет, ни плюс (послушалась), ни минус (не послушалась), он таки реально ноль. И в поросятах знает толк.

Потому что если любого поросёнка умножить на ноль, то поросёнка засасывает в эту круглую чёрную дыру, и получается опять ноль. Не такой уж этот ноль и нейтральный, когда дело от сложения-вычитания доходит до умножения, не говоря уже про деление… Там если ноль сверху «0/x» - то опять чёрная дыра. Всё поедает в ноль. А вот если при делении, да ещё и снизу - «x/0», то начинается… следуй за белым кроликом, Соня!

В школе тебе скажут «на ноль делить нельзя» и не покраснеют. В доказательство тыкнут на калькуляторе «1/0=» и обычный калькулятор, тоже не покраснев, напишет «E», «Error», мол, «нельзя - значит нельзя». Хотя что там у тебя будет считаться обычным калькулятором - ещё вопрос. Мне вот сейчас, в 2014-ом, стандартный калькулятор на телефоне-андроиде пишет совсем другое:

Ничего себе бесконечность. Скользи себе взглядом, круги нарезай. Вот тебе и нельзя. Оказывается можно. Если осторожно. Потому что не осторожно мой Android пока тоже не согласен: «0/0=Error», опять нельзя. Попробуем ещё разок: «-1/0 = -∞», о как. Интересное мнение, но я с ним не согласен. Как не согласен и с «0/0=Error».

Кстати, JavaScript, который питает нынешние сайты, тоже не согласен с калькулятором андроида: зайди в консоль браузера (ещё F12?) и напиши там: «0/0» (ввод). JS тебе ответит: «NaN». Это не ошибка. Это «Not a Number» - т.е. какая-то штука такая, но не число. При том что «1/0» JS тоже понимает как «Infinity». Это уже ближе. Но пока только тепло…

В университете - высшая математика. Там пределы, полюса, и прочее шаманство. И всё усложняется, усложняется, ходят вокруг да около, но только бы не нарушать хрустальные законы математики. А вот если не пытаться вписать деление на ноль в эти существующие законы, то можно прочувствовать эту фантастику - на пальцах.

Для этого посмотрим-ка ещё раз на деление:

Следи за правой линией, справа налево. Чем ближе икс к нулю, тем сильнее взлетает вверх разделённое на икс. И где-то там в облаках «плюс бесконечность». Она всегда дальше, как горизонт, её не догонишь.

А теперь следи за левой линией, слева направо. Та же история, только теперь разделённое улетает вниз, бесконечно вниз, в «минус бесконечность». Отсюда и мнение, что «1/0= +∞», а «-1/0 = 1/-0 = -∞».

Но фокус в том, что «0 = -0», нету у нуля знака, если не усложнять с пределами. И вот если поделить единицу на такой «простой» ноль без знака, то не логично ли предположить, что получится и бесконечность - «просто» бесконечность, без знака, как ноль. Где она - сверху или снизу? Она везде - бесконечно далеко от нуля во всех направлениях. Это и есть ноль, вывернутый наизнанку. Ноль - нет ничего. Бесконечность - есть всё. И положительное, и отрицательное. Вообще всё. И сразу. Абсолют.

Но там что-то было про «0/0», что-то другое, не бесконечность… Сделаем такой трюк: «2*0=0», ага, скажет учительница в школе. Ещё: «3*0=0» - опять ага. И немного наплевав на «на ноль делить нельзя», мол, весь мир и так потихоньку делит, получим: «2=0/0» и «3=0/0». В каком там классе это проходят, только без нуля, конечно.

Минуточку, получается «2 = 0/0 = 3», «2=3»?! Вот поэтому и боятся, вот поэтому и «нельзя». Страшнее «1/0» только «0/0», его даже калькулятор андроида боится.

А мы не боимся! Потому что у нас есть сила математики воображения. Мы можем представить себя бесконечным Абсолютом где-то там в звёздах, посмотреть оттуда на грешный мир конечных чисел и людей и понять, что с этой точки зрения они все одинаковые. И «2» c «3», и даже «-1», и училка в школе, возможно, тоже.

Так вот, я скромно предполагаю, что 0/0 - это весь конечный мир, точнее всё, что и не бесконечно и не пустота.

Вот как выглядит ноль, делённый на икс, в моих фантазиях, далёких от официальной математики. На самом деле похоже на 1/х, только перегиб не в единице, а в нуле. Кстати, у 2/x перегиб в двойке, а у 0.5/x - в 0.5.

Получается, 0/x при x=0 принимает все конечные значения - не бесконечности, не пустоту. Там в графике дырочка в нуле, оси проглядывают.

Можно конечно возразить, что «0*0 = 0», а значит ноль (пустота) тоже попадает в категорию 0/0. Чуть забегу вперёд - там будут степени нуля и это возражение разлетится в осколки.

Упс, единичка-то в бесконечности тоже может быть тоже записана как 0/0, получится (0/0)/0 - бесконечность. Вот теперь порядок, всё можно выразить соотношением нулей.

Например, если к бесконечности прибавить конечное, то бесконечность поглотит конечное, останется бесконечностью:
1/0 + 0/0 = (1+0)/0 = 1/0.

А если бесконечность умножить на пустоту, то они поглощают друг друга, и получается конечный мир:
1/0 * 0 = (1*0)/0 = 0/0.

Но это только первый уровень сновидений. Можно копать глубже.

Если ты уже знаешь понятие «степень числа», и что «1/x = x^-1», то, подумав, сможешь перейти от всех этих делений и скобок (вроде (0/0)/0) просто к степеням:

1/0 = 0^-1
0/0 = 0^0
0 = 0^1

Подсказка.
Тут с бесконечностью и пустотой всё просто, как в школе. А конечный мир переходит к степеням вот так:
0/0
= (0*1)/0
= 0*(1/0)
= 0 * 1/0
= 0^1 * 0^-1
= 0^(1 + -1)
= 0^(1-1)
= 0^0.

Уфф!

Получается, что положительные степени нуля - это нули, отрицательные степени нуля - это бесконечности, а нулевая степень нуля - это конечный мир.

Такой вот получается универсальный объект «0^x». Такие объекты прекрасно между собой взаимодействуют, опять-таки многим законам подчиняются, красота, в общем.

Моих скромных познаний математики хватило, чтобы нарисовать из них абелеву группу, которая, будучи изолированной в вакууме («просто абстрактные объекты, такая форма записи, вроде экспоненты»), даже выдержала проверку крутейшим преподом по матану с вердиктом «интересно, но ничего не получится». Ещё бы тут что-нить получилось, это ж табуированная тема - деление на ноль. В общем, не грузись.

Попробуем лучше просто умножить бесконечность на конечное число:
0^-1 * 0^0 = 0^(-1 + 0) = 0^-1.

Опять же, бесконечность поглотила конечное число так же, как и её антипод ноль поглощает конечные числа, та же чёрная дыра:
0^1 * 0^0 = 0^(1 + 0) = 0^1.

А ещё оказывается что степени - это как сила. Т.е. ноль второй степени сильнее нуля обычного (первой степени, 0^1). И бесконечность минус второй степени сильнее бесконечности обычной (0^-1).

А когда пустота сталкивается с абсолютом, они меряются силой - у кого больше, тот и победит:
0^1 * 0^-2 = 0^(1 + -2) = 0^-1 = ∞.
0^2 * 0^-1 = 0^(2 + -1) = 0^1 = 0.

Если же они равны силами, то аннигилируются и остаётся конечный мир:
0^1 * 0^-1 = 0^(1 + -1) = 0^0.

Кстати, официальная математика уже рядом. Её представители знают про «полюса» и что у полюсов разная сила (порядок), а так же про «нуль порядка k». Но они всё топчутся на прочной поверхности «рядом с» и боятся прыгнуть в чёрную нору дыру.

И последний для меня - третий уровень сновидений. Вот, например, эти все 0^-1 и 0^-2 - бесконечности разной силы. Или 0^1, 0^2 - нули разной силы. Но ведь и «-1» и «-2» и «+1» и «+2» - это всё - 0/0, равное 0^0, уже проходили. Получается, что с этого уровня сновидений, уже всё равно вообще что это - нули, бесконечности, и даже конечный мир туда при некотором просветлении попадает. В одну точку. В одну категорию. Называется это счастье - Сингулярность.

Надо признать, что вне состояния просветления одной точки я не наблюдаю, но одну категорию - объединение «0^0 U 0^(0^0)» - вполне.

Какую из всего этого можно вынести пользу? Ведь даже чуть менее безумные «мнимые числа», что тоже рвут калькуляторы в Error = √-1, и те смогли стать официальной математикой и теперь упрощают расчёты сталеварения.

Как листья на дереве издалека кажутся одинаковыми, но если рассмотреть их внимательнее - они все разные. А если задуматься, то опять одинаковые. И мало чем отличаются от тебя или меня. Вернее, вообще ничем не отличаются, если крепко задуматься.

Польза тут в умении и фокусироваться на отличиях и абстрагироваться. Это очень полезно и в работе, и в жизни, и даже в отношении к смерти.

Вот такие путешествия в кроличью нору, Соня!

Ноль сам по себе цифра очень интересная. Сам по себе означает пустоту, отсутствие значения, а рядом с другой цифрой увеличивает ее значимость в 10 раз. Любые числа в нулевой степени всегда дают 1. Этот знак использовали еще в цивилизации майя, причем он у них еще обозначал понятие «начало, причина». Даже календарь у начинался с нулевого дня. А еще эта цифра связана со строгим запретом.

Еще с начальных школьных лет все мы четко усвоили правило «на ноль делить нельзя». Но если в детстве многое воспринимаешь на веру и слова взрослого редко вызывают сомнения, то со временем иногда хочется все-таки разобраться в причинах, понять, почему были установлены те или иные правила.

Почему нельзя делить на ноль? На этот вопрос хочется получить понятное логическое объяснение. В первом классе учителя это сделать не могли, потому как в математике правила объясняются с помощью уравнений, а в том возрасте мы и представления не имели о том, что это такое. А теперь пришла пора разобраться и получить понятное логическое объяснение того, почему нельзя делить на ноль.

Дело в том, что в математике лишь две из четырех основных операций (+, - , х, /) с числами признаются независимыми: умножение и сложение. Остальные же операции принято считать производными. Рассмотрим простенький пример.

Вот скажите, сколько получится, если от 20 отнять 18? Естественно, в нашей голове моментально возникает ответ: это будет 2. А как мы пришли к такому результату? Кому-то этот вопрос покажется странным - ведь и так все ясно, что получится 2, кто-то пояснит, что от 20 копеек отнял 18 и у него получилось две копейки. Логически все эти ответы не вызывают сомнений, однако с точки зрения математики решать эту задачу следует по-другому. Еще раз напомним, что главными операциями в математике являются умножение и сложение и поэтому в нашем случае ответ кроется в решении следующего уравнения: х + 18 = 20. Из которого и вытекает, что х = 20 - 18, х =2. Казалось бы, зачем так подробно все расписывать? Ведь и так все элементарно просто. Однако без этого тяжело объяснить почему нельзя делить на ноль.

А теперь посмотрим что получится если мы пожелаем 18 разделить на ноль. Снова составим уравнение: 18: 0 = х. Поскольку операция деления является производной от процедуры умножения, то преобразовав наше уравнение получим х * 0 = 18. Вот здесь как раз и начинается тупик. Любое число на месте икса при умножении на ноль даст 0 и получить 18 нам никак не удастся. Теперь становится предельно ясно почему нельзя делить на ноль. Сам ноль можно делить на какое-угодно число, а вот наоборот - увы, никак нельзя.

А что получится, если ноль разделить на самого себя? Это можно записать в таком виде: 0: 0 = х, или х * 0 = 0. Это уравнение имеет бесчисленное число решений. Поэтому в итоге получается бесконечность. Поэтому операция и в этом случае тоже не имеет смысла.

Деление на 0 лежит в корне многих мнимых математических шуток, которыми при желании можно озадачить любого несведущего человека. К примеру, рассмотрим уравнение: 4*х - 20 = 7*х - 35. Вынесем за скобки в левой части 4, а в правой 7. Получим: 4*(х - 5) = 7*(х - 5). Теперь умножим левую и правую часть уравнения на дробь 1 / (х - 5). Уравнение примет такой вид: 4*(х - 5)/(х - 5) = 7*(х - 5)/ (х - 5). Сократим дроби на (х - 5) и у нас выйдет, что 4 = 7. Из этого можно сделать вывод, что 2*2 = 7! Конечно, подвох здесь в том, что равен 5 и сокращать дроби было нельзя, поскольку это приводило к делению на ноль. Поэтому при сокращении дробей нужно всегда проверять чтобы ноль случайно не оказался в знаменателе, иначе результат получится совсем непредсказуемым.

«Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0 = 0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 или 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

Александр Сергеев

Комментарии: 0

    Вашему вниманию предлагается исследовательская программа, последовательно возрождающая неопифагорейскую философию в теоретической физике и основанная на убеждении в неслучайности физических законов, в существовании единого первичного принципа, определяющего структуру (видимого и невидимого) Мира и записанного на абстрактном математическом языке, на языке Чисел (целых, действительных и, возможно, их обобщений).

    Арнольд В. И.

    Популярная лекция, в том виде, в каком Владимир Игоревич Арнольд прочитал ее 13 мая 2006 года в концертном зале «Академический» по приглашению фонда «Династия». Эту лекцию, как уверяет сам академик Арнольд, может понять даже школьник.

    Кажется, ХХ век прошёл не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трёх чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной учёной игрушкой - в одном ряду с теорией относительности, квантовой механикой и теоремой Гёделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учёными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.

    Александров П. С., Маркушевич А. И., Хинчин А. Я.

    Сборник книг предназначается для людей, изучавших элементарную математику и уже ставших или готовящихся стать преподавателями элементарной математики. Логика нашего издания - это логика систематического, по возможности простого и доступного изложения тех вопросов математической науки, из которых строится школьный курс, а также и тех, которые хотя и не находят в этом курсе прямого выражения, однако необходимы для правильного и сознательного его понимания и создают перспективы для дальнейшего развития содержания и методов школьного курса.

    Владимир Кассандров

    Программа Гордона

    Существует ли единый «Код Природы»? Может ли число порождать свет, а свет - материю? В чем суть основных принципов «неопифагорейского» подхода к построению физических теорий? О «реке времени» и частицах как точках «сгущения» первичных световых потоков - физик Владимир Кассандров.

У математиков специфический юмор и некоторые вопросы, связанные с вычислениями, уже давно не воспринимаются серьезно. Не всегда понятно, пытаются тебе на полном серьезе объяснить, почему нельзя делить на ноль или это очередная шутка. А ведь сам вопрос не такой уж очевидный, если в элементарной математике до его решения можно дойти чисто логически, то вот в высшей вполне могут быть другие исходные условия.

Когда появился ноль?

Цифра ноль таит в себе множество загадок:

  • В Древнем Риме этого числа не знали, система отсчета начиналась с I.
  • За право называться прародителями ноля долгое время спорили арабы и индийцы.
  • Исследования культуры Майя показали, что эта древняя цивилизация вполне могла быть первой, в плане употребления ноля.
  • Ноль не обладает никаким числовым значением, даже минимальным.
  • Он буквально означает ничто, отсутствие предметов для счета.

В первобытном строе не было особой нужды для такой цифры, отсутствие чего-либо можно было объяснить при помощи слов. Но с зарождением цивилизаций повысились и потребности человека, в плане архитектуры и инженерии.

Для осуществления более сложных расчетов и выведения новых функций понадобилось число, которое обозначало бы полное отсутствие чего-либо .

Можно ли делить на ноль?

На этот счет существуют два диаметрально противоположных мнения :

В школе, еще в младших классах учат тому, что на ноль делить нельзя ни в коем случае. Объясняется это предельно просто:

  1. Представим, что у вас есть 20 долек мандарина.
  2. Поделив их на 5, вы раздадите пятерым друзьям по 4 дольки.
  3. Разделить на ноль не получится, ведь самого процесса деления между кем-то не будет.

Конечно же, это образное объяснение, во многом упрощенное и не совсем соответствующее действительности. Но оно предельно доступно поясняет бессмысленность деления чего-либо на ноль.

Ведь, по сути, таким образом можно обозначать факт отсутствия деления. А зачем усложнять математические вычисления и записывать еще и отсутствие деления?

Можно ли ноль делить на число?

С точки зрения прикладной математики, любое деление, в котором принимает участие ноль, имеет не так уж много смысла. Но школьные учебники однозначны в своем мнении:

  • Ноль можно делить.
  • Для деления следует использовать любое число.
  • Нельзя делить ноль на ноль.

Третий пункт может вызвать легкое недоумение, ведь всего несколькими абзацами выше указывалось, что такое деление вполне возможно. На самом деле, все зависит от дисциплины, в рамках которой вы проводите вычисления.

Школьникам в таком случае действительно лучше писать, что выражение невозможно определить , а, следовательно, оно и не имеет смысла. Но в некоторых ответвлениях алгебраической науки допускается запись такого выражения, с делением ноля на ноль. Особенно когда речь идет о вычислительных машинах и языках программирования.

Потребность делить ноль на число может возникнуть во время решения каких-либо равенств и поиска исходных значений. Но в таком случае, в ответе всегда будет ноль . Здесь, как и с умножением, на какое число вы бы не делили ноль, больше ноля в итоге не получите. Поэтому если в огромной формуле заметили это заветное число, постарайтесь быстро «прикинуть», а не сведутся ли все вычисления к очень простому решению.

Если бесконечность делить на ноль

О бесконечно больших и бесконечно малых значениях необходимо было упомянуть чуть раньше, ведь это тоже открывает некоторые лазейки для деления, в том числе и с использованием ноля. Вот правда и тут есть небольшая загвоздка, ведь бесконечно малое значение и полное отсутствие значения - понятия разные .

Но этой небольшой разницей в наших условиях можно пренебречь, в конечном счете, вычисления проходят с использованием абстрактных величин:

  • В числители должен быть знак бесконечности.
  • В знаменатели символическое изображение стремящегося к нулю значения.
  • В ответе выйдет бесконечность, отображающая бесконечно большую функцию.

Следует обратить внимание на то, что речь все же идет о символическом отображении бесконечно малой функции, а не об использовании ноля. С этим знаком ничего не поменялось, на него все так же нельзя делить, только в качестве очень и очень редких исключений.

В большинстве своем ноль используется для решения задач, которые находятся в чисто теоретической плоскости . Возможно, по прошествии десятилетий или даже столетий, всем современным вычислениям найдется практическое применение, и они обеспечат какой-то грандиозный прорыв в науке.

А пока что большинство гениев от математики о всемирном признании лишь мечтают. Исключение из этих правил - наш соотечественник, Перельман . Но его знают благодаря решению действительно эпохальной задачи с доказательством гипотезы Пуанкере и экстравагантному поведению.

Парадоксы и бессмысленность деления на ноль

Деление на ноль, в большинстве своем, не имеет никакого смысла:

  • Деление представляют как функцию, обратную умножению .
  • Мы можем умножить на ноль любое число и получить в ответе ноль.
  • По той же логике, можно было бы делить любое число на ноль.
  • В таких условиях несложно было бы прийти к выводу, что любое число, умноженное или деленное на ноль, равно любому другому числу, над которым провели эту операцию.
  • Откидываем математическое действие и получаем интереснейшее заключение - любое число равно любому числу.

Помимо создания таких вот казусов, деление на ноль не имеет практического значения , от слова вообще. Даже при возможности выполнения этого действия, не выйдет получить никакой новой информации.

С точки зрения элементарной математики, во время деления на ноль происходит разделение целого предмета ноль раз, то есть ни одного раза. Проще говоря - процесса деления не происходит , следовательно, и результата этого события быть не может.

Находясь в одном обществе с математиком, всегда можно задать пару банальных вопросов, по примеру, почему нельзя делить на ноль и получить интересный и доступный для понимания ответ. Или раздраженность, ведь у человека наверняка это спрашивают не в первый раз. И даже не в десятый. Так что берегите своих друзей-математиков, не заставляйте их повторять по сотне раз одно объяснение.

Видео: делим на ноль

В этом видео математик Анна Ломакова расскажет, что произойдет, если поделить какое-либо число на ноль и почему этого делать нельзя, с точки зрения математики: