Определение

Скалярная величина - величина, которая может быть охарактеризована числом. Например, длина, площадь , масса, температура и т.д.

Вектором называется направленный отрезок $\overline{A B}$; точка $A$ - начало, точка $B$ - конец вектора (рис. 1).

Вектор обозначается либо двумя большими буквами - своим началом и концом: $\overline{A B}$ либо одной малой буквой: $\overline{a}$.

Определение

Если начало и конец вектора совпадают, то такой вектор называется нулевым . Чаще всего нулевой вектор обозначается как $\overline{0}$.

Векторы называются коллинеарными , если они лежат либо на одной прямой, либо на параллельных прямых (рис. 2).

Определение

Два коллинеарных вектора $\overline{a}$ и $\overline{b}$ называются сонаправленными , если их направления совпадают: $\overline{a} \uparrow \uparrow \overline{b}$ (рис. 3, а). Два коллинеарных вектора $\overline{a}$ и $\overline{b}$ называются противоположно направленными , если их направления противоположны: $\overline{a} \uparrow \downarrow \overline{b}$ (рис. 3, б).

Определение

Векторы называются компланарными , если они параллельны одной плоскости или лежат в одной плоскости (рис. 4).

Два вектора всегда компланарны.

Определение

Длиной (модулем) вектора $\overline{A B}$ называется расстояние между его началом и концом: $|\overline{A B}|$

Подробная теория про длину вектора по ссылке .

Длина нулевого вектора равна нулю.

Определение

Вектор, длина которого равна единице, называется единичным вектором или ортом .

Векторы называются равными , если они лежат на одной или параллельных прямых; их направления совпадают и длины равны.

В статье пойдет речь о том, что такое вектор, что он из себя представляет в геометрическом смысле, введем вытекающие понятия.

Для начала дадим определение:

Определение 1

Вектор – это направленный отрезок прямой.

Исходя из определения, под вектором в геометрии отрезок на плоскости или в пространстве, который имеет направление, и это направление задается началом и концом.

В математике для обозначения вектора обычно используют строчные латинские буквы, однако над вектором всегда ставится небольшая стрелочка, например a → . Если известны граничные точки вектора – его начало и конец, к примеру A и B , то вектор обозначается так A B → .

Определение 2

Под нулевым вектором 0 → будем понимать любую точку плоскости или пространства.

Из определения становится очевидным, что нулевой вектор может иметь любое направление на плоскости и в пространстве.

Длина вектора

Определение 3

Под длиной вектора A B → понимается число, большее либо равное 0, и равное длине отрезка АВ.

Длину вектора A B → принято обозначать так A B → .

Понятия модуль вектора и длина вектора равносильны, потому что его обозначение совпадает со знаком модуля. Поэтому длину вектора также называют его модулем. Однако грамотнее использовать термин "длина вектора". Очевидно, что длина нулевого вектора принимает значение ноль.

Коллинеарность векторов

Определение 4

Два вектора лежащие на одной прямой или на параллельных прямых называются коллинеарными .

Определение 5

Два вектора не лежащие на одной прямой или на параллельных прямых называются неколлинеарными .

Следует запомнить, что Нулевой вектор всегда коллинеарен любому другому вектору, так как он может принимать любое направление.

Коллиниарные векторы в свою очередь тоже можно разделить на два класса: сонаправленные и противоположно направленные.

Определение 6

Сонаправленными векторами называют два коллинеарных вектора a → и b → , у которых направления совпадают, такие векторы обозначаются так a → b → .

Определение 7

Противоположно направленными векторами называются два коллинеарных вектора a → и b → , у которых направления не совпадают, т.е. являются противоположными, такие векторы обозначаются следующим образом a → ↓ b → .

Считается, что нулевой вектор является сонаправленым к любым другим векторам.

Определение 8

Равными называются сонаправленные вектора, у которых длины равны.

Определение 9

Противопожными называются противоположно направленные вектора, у которых их длины равны.

Введенные выше понятия позволяют нам рассматривать векторы без привязки к конкретным точкам. Иначе говоря, можно заменить вектор равным ему вектором, отложенным от любой точки.

Пусть заданы два произвольных вектора на плоскости или в пространстве a → и b → . Отложим от некоторой точки O плоскости или пространства векторы O A → = a → и O B → = b → . Лучи OA и OB образуют угол ∠ A O B = φ .

Определение 9

Угол φ = ∠ A O B называется углом между векторами a → = O A → и b → = O B → .

Очевидно, что угол между сонаправленными векторами равен нулю градусам (или нулю радиан), так как сонаправленные векторы лежат на одной или на параллельных прямых и имеют одинаковое направление, а угол между противоположно направленными векторами равен 180 градусам (или π радиан), так как противоположно направленные векторы лежат на одной или на параллельных прямых, но имеют противоположные направления.

Определение 10

Перпендикулярными называются два вектора, угол между которыми равен 90 градусам (или π 2 радиан).

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение 1. Вектором в пространстве называется направленный отрезок.

Таким образом, векторы в отличие от скалярных величин имеют две характеристики: длину и направление. Будем обозначать векторы символами , илиа .

(Здесь А иВ – начало и конец данного вектора(рис.1))а В

Длина вектора обозначается символом модуля: .А рис.1

Различают три вида векторов, задаваемых отношением равенства между ними:

    Закрепленные векторы называются равными, если у них совпадают начала и концы соответственно. Примером такого вектора является вектор силы.

    Скользящие векторы называются равными, если они расположены на одной прямой, имеют одинаковые длины и направления. Примером таких векторов является вектор скорости.

    Свободные или геометрические векторы считаются равными, если они могут быть совмещены с помощью параллельного переноса.

В курсе аналитической геометрии рассматриваются только свободные векторы.

Определение 2. Вектор, длина которого равна нулю, называетсянулевым вектором, илиноль –

вектором .

Очевидно, начало и конец нулевого вектора совпадают. Нулевой вектор не имеет определенного направления или имеет любое направление.

Определение 3. Два вектора, лежащих на одной прямой или параллельных прямых называются

коллинеарными (рис.2). Обозначают:
.a

b

Определение 4. Два коллинеарных и одинаково направленных вектора называются

сонаправленными. Обозначают:
.

Теперь можно дать строгое определение равенства свободных векторов:

Определение 5. Два свободных вектора называются равными, если они сонаправлены и имеют

одинаковую длину.

Определение 6. Три вектора, лежащих в одной или параллельных плоскостях называются

компланарными .

Два перпендикулярных вектора называют взаимно ортогональными :
.

Определение 7. Вектор единичной длины называетсяединичным вектором илиортом.

Орт, сонаправленный ненулевому вектору а называютортом вектора а :e a .

§2.Линейные операции над векторами.

На множестве векторов определены линейные операции: сложение векторов и умножение вектора на число.

I. Сложение векторов.

Суммой 2 – х векторов называется вектор, начало которого совпадает с началом первого, а конец с концом второго, при условии, что начало второго совпадает с концом первого.

Легко видеть, что сумма двух векторов, определенная

таким образом (рис.3а), совпадает с суммой векторов,

построенной по правилу параллелограмма (рис.6). b

Однако, данное правило позволяет строить a

сумму любого числа векторов (рис.3б).

a + b

a

b a + b + c

рис.3б c

Существует два способа решения задач по стереометрии

Первый - классический - требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод - применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили - то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами - координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z :

Как найти координаты вектора? Как и на плоскости - из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA 1 B 1 C 1 D 1 точки E и K - середины ребер соответственно A 1 B 1 и B 1 C 1 . Найдите косинус угла между прямыми AE и BK.

Если вам достался куб - значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK - скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K - середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E - середина SB, а K - середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, точка D - середина ребра A 1 B 1 . Найдите косинус угла между прямыми AD и BC 1

Пусть точка A - начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D - середина A 1 B 1 . Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C - координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое - вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор - это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения - чтобы косинус угла был неотрицателен.

4. В кубе ABCDA 1 B 1 C 1 D 1 точки E и F - середины ребер соответственно A 1 B 1 и A 1 D 1 . Найдите тангенс угла между плоскостями AEF и BDD 1 .

Строим чертеж. Видно, что плоскости AEF и BDD 1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD 1 .

Сначала - нормаль к плоскости BDD 1 . Конечно, мы можем подставить координаты точек B, D и D 1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее - увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD 1 - это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA 1 B 1 C 1 D 1 - прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA 1 D 1 D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B 1 D, если расстояние между прямыми A 1 C 1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства - как это делается в «классике»:-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать "параллелепипед".

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота - вроде не дана. Как же ее найти?

«Расстояние между прямыми A 1 C 1 и BD равно √3». Прямые A 1 C 1 и BD скрещиваются. Одна из них - диагональ верхнего основания, другая - диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A 1 C 1 и BD - это, очевидно, OO 1 , где O - точка пересечения диагоналей нижнего основания, O 1 - точка пересечения диагоналей верхнего. А отрезок OO 1 и равен высоте параллелепипеда.

Итак, AA 1 = √3

Плоскость AA 1 D 1 D - это задняя грань призмы на нашем чертеже. Нормаль к ней - это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B 1 D». Но позвольте, если плоскость перпендикулярна прямой B 1 D - значит, B 1 D и есть нормаль к этой плоскости! Координаты точек B 1 и D известны:

Координаты вектора - тоже.

Все определения и теоремы, связанные с векторами на плоскости, верны и для пространства. Напомним основные определения.

Чтобы определить вектор нам понадобится

Определение

Направленным отрезком называется упорядоченная пара точек пространства. Направленные отрезки называются равными , если они имеют равную длину и направление.

Определение

Вектором называется множество всех равных между собой направленных отрезков.

Векторы обычно обозначают строчными латинскими буквами со стрелкой сверху: $\vec{a}$, $\vec{b}$, $\vec{c}$. Направленные отрезки обозначают, указывая начало и конец, также со стрелкой сверху: $\vec{AB}$.

Вектор - множество, состоящее из бесконечного числа элементов. Часто про направленный отрезок говорят "вектор". Если $\vec{AB} \in \vec{a}$, то говорят, что направленный отрезок $\vec{AB}$ изображает вектор $\vec{a}$. При этом на чертеже рисуется направленный отрезок, а говорят про него "вектор". Например, когда мы говорим "отложим вектор $\vec{r}$ от точки $O$, то имеется в виду, что мы строим направленный отрезок $\vec{OR}$, изображающий вектор $\vec{r}$.

Определение

Векторы называются равными , если равны изображающие их направленные отрезки.

Над векторами можно производить операции сложения и вычитания, а также умножать данный вектор на действительное число.

Из планиметрии известны правило треугольника: $\vec{a}+\vec{b} = \vec{c}$,

правило параллелограмма: $\vec{a}+\vec{b} = \vec{c}$

и правило ломаной сложения векторов для плоскости, которые верны и в пространстве.

Правило ломаной сложения векторов

Если $A_1, \, A_2, \, \dots, \, A_n$ - произвольные точки пространства, то

$ \vec{A_1A_2} + \dots + \vec{A_{n-1}A_n} = \vec{A_1A_n}. $

Кроме того, в пространстве справедливо

Правило параллелепипеда

Если $\vec{OA} \in \vec{a}$, $\vec{OB} \in \vec{b}$, $\vec{OC} \in \vec{c}$, то, построив на направленных отрезках параллелепипед $OAEBCFDG$, можно найти направленный отрезок $\vec{OD}$, изображающий вектор $\vec{d}$, который является суммой векторов $\vec{a}, \, \vec{b}, \, \vec{c}.$