В ходе урока вы сможете самостоятельно изучить тему «Графическое решение уравнений, неравенств». Преподаватель на занятии разберет графические методы решения уравнений и неравенств. Научит строить графики, анализировать их и получать решения уравнений и неравенств. На уроке также будут разобраны конкретные примеры по этой теме.

Тема: Числовые функции

Урок: Графическое решение уравнений, неравенств

1. Тема урока, введение

Мы рассмотрели графики элементарных функций, в том числе графики степенных функций c разными показателями. Также мы рассмотрели правила сдвига и преобразований графиков функций. Все эти навыки необходимо применить, когда требуется графическое решение уравнений или графическое решение неравенств .

2. Решение уравнений и неравенств графическим способом

Пример 1. Графически решить уравнение:

Построим графики функций (Рис. 1).

Графиком функции является парабола, проходящая через точки

График функции - прямая, построим её по таблице.

Графики пересекаются в точке Других точек пересечения нет, т. к. функция монотонно возрастает, функция монотонно убывает, а, значит, их точка пересечения является единственной.

Пример 2. Решить неравенство

a. Чтобы выполнялось неравенство, график функции должен располагаться над прямой (Рис. 1). Это выполняется при

b. В этом случае, наоборот, парабола должна находиться под прямой. Это выполняется при

Пример 3. Решить неравенство

Построим графики функций (Рис. 2).

Найдем корень уравнения При нет решений. При существует одно решение .

Чтобы выполнялось неравенство гипербола должна располагаться над прямой Это выполняется при .

Пример 4. Решить графически неравенство:

Область определения:

Построим графики функций для (Рис. 3).

a. График функции должен располагаться под графиком это выполняется при

b. График функции расположен над графиком при Но т. к. в условии имеем нестрогий знак, важно не потерять изолированный корень

3. Заключение

Мы рассмотрели графический метод решения уравнений и неравенств; рассмотрели конкретные примеры, при решении которых использовали такие свойства функций, как монотонность и четность.

1. Мордкович А. Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш. А., Колягин Ю. М., Сидоров Ю. В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Раздел College. ru по математике.

2. Интернет-проект «Задачи» .

3. Образовательный портал «РЕШУ ЕГЭ» .

1. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 355, 356, 364.

см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования

Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C 2 y , которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x ; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y ) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by c , ax + by c . Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by <c .
Действительно, возьмем точку с координатой x = x 0 ; тогда точка, лежащая на прямой и имеющая абсциссу x 0 , имеет ординату

Пусть для определенности a < 0, b >0, c >0. Все точки с абсциссой x 0 , лежащие выше P (например, точка М ), имеют y M >y 0 , а все точки, лежащие ниже точки P , с абсциссой x 0 , имеют y N <y 0 . Поскольку x 0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки, для которых ax + by > c , образующие полуплоскость, а с другой стороны – точки, для которых ax + by < c .

Рисунок 1

Знак неравенства в полуплоскости зависит от чисел a , b , c .
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.

Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x + y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y – 2 = 0

x 2 0
y 0 1

y x – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых


Таким образом, А (–3; –2), В (0; 1), С (6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.

Графический метод является одним из основных методов решения квадратных неравенств. В статье мы приведем алгоритм применения графического метода, а затем рассмотрим частные случаи на примерах.

Суть графического метода

Метод применим для решения любых неравенств, не только квадратных. Суть его вот в чем: правую и левую части неравенства рассматривают как две отдельные функции y = f (x) и y = g (x) , их графики строят в прямоугольной системе координат и смотрят, какой из графиков располагается выше другого, и на каких промежутках. Оцениваются промежутки следующим образом:

Определение 1

  • решениями неравенства f (x) > g (x) являются интервалы, где график функции f выше графика функции g ;
  • решениями неравенства f (x) ≥ g (x) являются интервалы, где график функции f не ниже графика функции g ;
  • решениями неравенства f (x) < g (x) являются интервалы, где график функции f ниже графика функции g ;
  • решениями неравенства f (x) ≤ g (x) являются интервалы, где график функции f не выше графика функции g ;
  • абсциссы точек пересечения графиков функций f и g являются решениями уравнения f (x) = g (x) .

Рассмотрим приведенный выше алгоритм на примере. Для этого возьмем квадратное неравенство a · x 2 + b · x + c < 0 (≤ , > , ≥) и выведем из него две функции. Левая часть неравенства будет отвечать y = a · x 2 + b · x + c (при этом f (x) = a · x 2 + b · x + c) , а правая y = 0 (при этом g (x) = 0).

Графиком первой функции является парабола, второй прямая линия, которая совпадает с осью абсцисс О х. Проанализируем положение параболы относительно оси О х. Для этого выполним схематический рисунок.

Ветви параболы направлены вверх. Она пересекает ось О х в точках x 1 и x 2 . Коэффициент а в данном случае положительный, так как именно он отвечает за направление ветвей параболы. Дискриминант положителен, что указывает на наличие двух корней у квадратного трехчлена a · x 2 + b · x + c . Корни трехчлена мы обозначили как x 1 и x 2 , причем приняли, что x 1 < x 2 , так как на оси О х изобразили точку с абсциссой x 1 левее точки с абсциссой x 2 .

Части параболы, расположенные выше оси О х обозначим красным, ниже – синим. Это позволит нам сделать рисунок более наглядным.

Выделим промежутки, которые соответствуют этим частям и отметим их на рисунке полями определенного цвета.

Красным мы отметили промежутки (− ∞ , x 1) и (x 2 , + ∞) , на них парабола выше оси О х. Они являются a · x 2 + b · x + c > 0 . Синим мы отметили промежуток (x 1 , x 2) , который является решением неравенства a · x 2 + b · x + c < 0 . Числа x 1 и x 2 будут отвечать равенству a · x 2 + b · x + c = 0 .

Сделаем краткую запись решения. При a > 0 и D = b 2 − 4 · a · c > 0 (или D " = D 4 > 0 при четном коэффициенте b) мы получаем:

  • решением квадратного неравенства a · x 2 + b · x + c > 0 является (− ∞ , x 1) ∪ (x 2 , + ∞) или в другой записи x < x 1 , x > x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≥ 0 является (− ∞ , x 1 ] ∪ [ x 2 , + ∞) или в другой записи x ≤ x 1 , x ≥ x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c < 0 является (x 1 , x 2) или в другой записи x 1 < x < x 2 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≤ 0 является [ x 1 , x 2 ] или в другой записи x 1 ≤ x ≤ x 2 ,

где x 1 и x 2 – корни квадратного трехчлена a · x 2 + b · x + c , причем x 1 < x 2 .

На данном рисунке парабола касается оси O х только в одной точке, которая обозначена как x 0 a > 0 . D = 0 , следовательно, квадратный трехчлен имеет один корень x 0 .

Парабола расположена выше оси O х полностью, за исключением точки касания координатной оси. Обозначим цветом промежутки (− ∞ , x 0) , (x 0 , ∞) .

Запишем результаты. При a > 0 и D = 0 :

  • решением квадратного неравенства a · x 2 + b · x + c > 0 является (− ∞ , x 0) ∪ (x 0 , + ∞) или в другой записи x ≠ x 0 ;
  • решением квадратного неравенства a · x 2 + b · x + c ≥ 0 является (− ∞ , + ∞) или в другой записи x ∈ R ;
  • квадратное неравенство a · x 2 + b · x + c < 0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси O x );
  • квадратное неравенство a · x 2 + b · x + c ≤ 0 имеет единственное решение x = x 0 (его дает точка касания),

где x 0 - корень квадратного трехчлена a · x 2 + b · x + c .

Рассмотрим третий случай, когда ветви параболы направлены вверх и не касаются оси O x . Ветви параболы направлены вверх, что означает, что a > 0 . Квадратный трехчлен не имеет действительных корней, так как D < 0 .

На графике нет интервалов, на которых парабола была бы ниже оси абсцисс. Это мы будем учитывать при выборе цвета для нашего рисунка.

Получается, что при a > 0 и D < 0 решением квадратных неравенств a · x 2 + b · x + c > 0 и a · x 2 + b · x + c ≥ 0 является множество всех действительных чисел, а неравенства a · x 2 + b · x + c < 0 и a · x 2 + b · x + c ≤ 0 не имеют решений.

Нам осталось рассмотреть три варианта, когда ветви параболы направлены вниз. На этих трех вариантах можно не останавливаться подробно, так как при умножении обеих частей неравенства на − 1 мы получаем равносильное неравенство с положительным коэффициентом при х 2 .

Рассмотрение предыдущего раздела статьи подготовило нас к восприятию алгоритма решения неравенств с использованием графического способа. Для проведения вычислений нам необходимо будет каждый раз использовать чертеж, на котором будет изображена координатная прямая O х и парабола, которая отвечает квадратичной функции y = a · x 2 + b · x + c . Ось O у мы в большинстве случаев изображать не будем, так как для вычислений она не нужна и будет лишь перегружать чертеж.

Для построения параболы нам необходимо будет знать две вещи:

Определение 2

  • направление ветвей, которое определяется значением коэффициента a ;
  • наличие точек пересечения параболы и оси абсцисс, которые определяются значением дискриминанта квадратного трехчлена a · x 2 + b · x + c .

Точки пересечения и касания мы будет обозначать обычным способом при решении нестрогих неравенств и пустыми при решении строгих.

Наличие готового чертежа позволяет перейти к следующему шагу решения. Он предполагает определение промежутков, на которых парабола располагается выше или ниже оси O х. Промежутки и точки пересечения и являются решением квадратного неравенства. Если точек пересечения или касания нет и нет интервалов, то считается, что заданное в условиях задачи неравенство не имеет решений.

Теперь решим несколько квадратных неравенств, используя приведенный выше алгоритм.

Пример 1

Необходимо решить неравенство 2 · x 2 + 5 1 3 · x - 2 графическим способом.

Решение

Нарисуем график квадратичной функции y = 2 · x 2 + 5 1 3 · x - 2 . Коэффициент при x 2 положительный, так как равен 2 . Это значит, что ветви параболы будут направлены вверх.

Вычислим дискриминант квадратного трехчлена 2 · x 2 + 5 1 3 · x - 2 для того, чтобы выяснить, имеет ли парабола с осью абсцисс общие точки. Получаем:

D = 5 1 3 2 - 4 · 2 · (- 2) = 400 9

Как видим, D больше нуля, следовательно, у нас есть две точки пересечения: x 1 = - 5 1 3 - 400 9 2 · 2 и x 2 = - 5 1 3 + 400 9 2 · 2 , то есть, x 1 = − 3 и x 2 = 1 3 .

Мы решаем нестрогое неравенство, следовательно проставляем на графике обычные точки. Рисуем параболу. Как видите, рисунок имеет такой же вид как и в первом рассмотренном нами шаблоне.

Наше неравенство имеет знак ≤ . Следовательно, нам нужно выделить промежутки на графике, на которых парабола расположена ниже оси O x и добавить к ним точки пересечения.

Нужный нам интервал − 3 , 1 3 . Добавляем к нему точки пересечения и получаем числовой отрезок − 3 , 1 3 . Это и есть решение нашей задачи. Записать ответ можно в виде двойного неравенства: − 3 ≤ x ≤ 1 3 .

Ответ: − 3 , 1 3 или − 3 ≤ x ≤ 1 3 .

Пример 2

− x 2 + 16 · x − 63 < 0 графическим методом.

Решение

Квадрат переменной имеет отрицательный числовой коэффициент, поэтому ветви параболы будут направлены вниз. Вычислим четвертую часть дискриминанта D " = 8 2 − (− 1) · (− 63) = 64 − 63 = 1 . Такой результат подсказывает нам, что точек пересечения будет две.

Вычислим корни квадратного трехчлена: x 1 = - 8 + 1 - 1 и x 2 = - 8 - 1 - 1 , x 1 = 7 и x 2 = 9 .

Получается, что парабола пересекает ось абсцисс в точках 7 и 9 . Отметим эти точки на графике пустыми, так как мы работаем со строгим неравенством. После этого нарисуем параболу, которая пересекает ось O х в отмеченных точках.

Нас будут интересовать промежутки, на которых парабола располагается ниже оси O х. Отметим эти интервалы синим цветом.

Получаем ответ: решением неравенства являются промежутки (− ∞ , 7) , (9 , + ∞) .

Ответ: (− ∞ , 7) ∪ (9 , + ∞) или в другой записи x < 7 , x > 9 .

В тех случаях, когда дискриминант квадратного трехчлена равен нулю, необходимо внимательно подходить к вопросу о том, стоит ли включать в ответ абсциссы точки касания. Для того, чтобы принять правильное решение, необходимо учитывать знак неравенства. В строгих неравенствах точка касания оси абсцисс не является решением неравенства, в нестрогих является.

Пример 3

Решите квадратное неравенство 10 · x 2 − 14 · x + 4 , 9 ≤ 0 графическим методом.

Решение

Ветви параболы в данном случае будут направлены вверх. Она будет касаться оси O х в точке 0 , 7 , так как

Построим график функции y = 10 · x 2 − 14 · x + 4 , 9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0 , 7 , так как D " = (− 7) 2 − 10 · 4 , 9 = 0 , откуда x 0 = 7 10 или 0 , 7 .

Поставим точку и нарисуем параболу.

Мы решаем нестрогое неравенство со знаком ≤ . Следовательно. Нас будут интересовать промежутки, на которых парабола располагается ниже оси абсцисс и точка касания. На рисунке нет интервалов, которые удовлетворяли бы нашим условиям. Есть лишь точка касания 0 , 7 . Это и есть искомое решение.

Ответ: Неравенство имеет только одно решение 0 , 7 .

Пример 4

Решите квадратное неравенство – x 2 + 8 · x − 16 < 0 .

Решение

Ветви параболы направлены вниз. Дискриминант равен нулю. Точка пересечения x 0 = 4 .

Отмечаем точку касания на оси абсцисс и рисуем параболу.

Мы имеем дело со строгим неравенством. Следовательно, нас интересуют интервалы, на которых парабола расположена ниже оси O х. Отметим их синим.

Точка с абсциссой 4 не является решением, так как в ней парабола не расположена ниже оси O x . Следовательно, мы получаем два интервала (− ∞ , 4) , (4 , + ∞) .

Ответ: (− ∞ , 4) ∪ (4 , + ∞) или в другой записи x ≠ 4 .

Не всегда при отрицательном значении дискриминанта неравенство не будет иметь решений. Есть случаи, когда решением будет являться множество всех действительных чисел.

Пример 5

Решите квадратное неравенство 3 · x 2 + 1 > 0 графическим способом.

Решение

Коэффициент а положительный. Дискриминант отрицательный. Ветви параболы будут направлены вверх. Точек пересечения параболы с осью O х нет. Обратимся к рисунку.

Мы работаем со строгим неравенством, которое имеет знак > . Это значит, что нас интересуют промежутки, на которых парабола располагается выше оси абсцисс. Это как раз тот случай, когда ответом является множество всех действительный чисел.

Ответ: (− ∞ , + ∞) или так x ∈ R .

Пример 6

Необходимо найти решение неравенства − 2 · x 2 − 7 · x − 12 ≥ 0 графическим способом.

Решение

Ветви параболы направлены вниз. Дискриминант отрицательный, следовательно, общих точек параболы и оси абсцисс нет. Обратимся к рисунку.

Мы работаем с нестрогим неравенством со знаком ≥ , следовательно, интерес для нас представляют промежутки, на которых парабола располагается выше оси абсцисс. Судя по графику, таких промежутков нет. Это значит, что данное у условии задачи неравенство не имеет решений.

Ответ: Нет решений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Цели:

1. Повторить знания о квадратичной функции.

2. Познакомиться с методом решения квадратного неравенства на основе свойств квадратичной функции.

Оборудование: мультимедиа, презентация “Решение квадратных неравенств”, карточки для самостоятельной работы, таблица “Алгоритм решения квадратного неравенства”, листы контроля с копировальной бумагой.

ХОД УРОКА

I. Организационный момент (1 мин).

II. Актуализация опорных знаний (10 мин).

1. Построение графика квадратичной функции у=х 2 -6х+8 <Рисунок 1. Приложение >

  • определение направления ветвей параболы;
  • определение координат вершины параболы;
  • определение оси симметрии;
  • определение точек пересечения с осями координат;
  • нахождение дополнительных точек.

2. Определить по чертежу знак коэффициента a и количество корней уравнения ах 2 +вх+с=0. <Рисунок 2. Приложение >

3. По графику функции у=х 2 -4х+3 определить:

  • Чему равны нули функции;
  • Найти промежутки, на которых функция принимает положительные значения;
  • Найти промежутки, на которых функция принимает отрицательные значения;
  • При каких значениях х функция возрастает, а при каких убывает? <Рисунок 3>

4. Изучение новых знаний (12 мин.)

Задача 1: Решить неравенство: х 2 +4х-5> 0.

Неравенству удовлетворяют значения х, при которых значения функции у=х 2 +4х-5 равны нулю или положительны, то есть те значения х при которых точки параболы лежат на оси ох или выше этой оси.

Построим график функции у=х 2 +4х-5.

С осью ох: Х 2 +4х-5=0. По теореме Виета: х 1 =1, х 2 =-5. Точки(1;0),(-5;0).

С осью оу: у(0)=-5. Точка (0;-5).

Дополнительные точки: у(-1)=-8, у(2)=7. <Рисунок 4>

Итог: Значения функции положительны и равны нулю (неотрицательны) при

  • Необходимо ли каждый раз для решения неравенства подробно строить график квадратичной функции?
  • Нужно ли находить координаты вершины параболы?
  • А что важно? (а, х 1 ,х 2)

Вывод: Для решения квадратного неравенства достаточно определить нули функции, направление ветвей параболы и построить эскиз графика.

Задача 2: Решить неравенство: х 2 -6х+8< 0.

Решение: Определим корни уравнения х 2 -6х+8=0.

По теореме Виета: х 1 =2, х 2 =4.

а>0 – ветви параболы направлены вверх.

Построим эскиз графика. <Рисунок 5>

Отметим знаками “+” и “–” интервалы, на которых функция принимает положительные и отрицательные значения. Выберем необходимый нам интервал.

Ответ: Х€.

5. Закрепление нового материала (7 мин).

№ 660 (3). Ученик решает на доске.

Решить неравенство-х 2 -3х-2<0.

Х 2 -3х-2=0; х 2 +3х+2=0;

корни уравнения: х 1 =-1, х 2 =-2.

а<0 – ветви вниз. <Рисунок 6>

№ 660 (1) - Работа со скрытой доской.

Решить неравенство х 2 -3х+2< 0.

Решение: х 2 -3х+2=0.

Найдем корни: ; х 1 =1, х 2 =2.

а>0 – ветви вверх. Строим эскиз графика функции. <Рисунок 7>

Алгоритм:

  1. Найти корни уравнения ах 2 +вх+с=0.
  2. Отметить их на координатной плоскости.
  3. Определить направление ветвей параболы.
  4. Построить эскиз графика.
  5. Отметить знаками “+” и “ - ”, интервалы на которых функция принимает положительные и отрицательные значения.
  6. Выбрать необходимый интервал.

6. Самостоятельная работа (10 мин.).

(Прием - копировальная бумага).

Лист-контроль подписывается и сдается учителю для проверки и определения коррекции.

Самопроверка по доске.

Дополнительное задание:

№ 670. Найти значения х, при которых функция принимает значения не большие нуля: у=х 2 +6х-9.

7. Домашнее задание (2 мин).

№ 660 (2, 4), № 661 (2, 4).

Заполнить таблицу:

D Неравенство a Чертеж Решение
D>0 ах 2 +вх+с> 0 a>0
D>0 ах 2 +вх+с> 0 a<0
D>0 ах 2 +вх+с< 0 a>0
D>0 ах 2 +вх+с< 0 a<0

8. Итог урока (3 мин).

  1. Воспроизведите алгоритм решения неравенств.
  2. Кто справился с работой на отлично?
  3. Что показалось сложным?

Один из самых удобных методов решения квадратных неравенств – это графический метод. В этой статье мы разберем, как решаются квадратные неравенства графическим способом. Сначала обсудим, в чем суть этого способа. А дальше приведем алгоритм и рассмотрим примеры решения квадратных неравенств графическим способом.

Навигация по странице.

Суть графического способа

Вообще графический способ решения неравенств с одной переменной применяется не только для решения квадратных неравенств, но и неравенств других видов. Суть графического способа решения неравенств следующая: рассматривают функции y=f(x) и y=g(x) , которые соответствуют левой и правой частям неравенства, строят их графики в одной прямоугольной системе координат и выясняют, на каких промежутках график одной из них располагается ниже или выше другого. Те промежутки, на которых

  • график функции f выше графика функции g являются решениями неравенства f(x)>g(x) ;
  • график функции f не ниже графика функции g являются решениями неравенства f(x)≥g(x) ;
  • график функции f ниже графика функции g являются решениями неравенства f(x)
  • график функции f не выше графика функции g являются решениями неравенства f(x)≤g(x) .

Также скажем, что абсциссы точек пересечения графиков функций f и g являются решениями уравнения f(x)=g(x) .

Перенесем эти результаты на наш случай – для решения квадратного неравенства a·x 2 +b·x+c<0 (≤, >, ≥).

Вводим две функции: первая y=a·x 2 +b·x+c (при этом f(x)=a·x 2 +b·x+c) отвечает левой части квадратного неравенства, вторая y=0 (при этом g(x)=0 ) отвечает правой части неравенства. Графиком квадратичной функции f является парабола, а графиком постоянной функции g – прямая, совпадающая с осью абсцисс Ox .

Дальше согласно графическому способу решения неравенств надо проанализировать, на каких промежутках график одной функции расположен выше или ниже другого, что позволит записать искомое решение квадратного неравенства. В нашем случае нужно проанализировать положение параболы относительно оси Ox .

В зависимости от значений коэффициентов a , b и c возможны следующие шесть вариантов (для наших нужд достаточно схематического изображения, и можно не изображать ось Oy , так как ее положение не влияет на решения неравенства):

    На этом чертеже мы видим параболу, ветви которой направлены вверх, и которая пересекает ось Ox в двух точках, абсциссы которых есть x 1 и x 2 . Этот чертеж отвечает варианту, когда коэффициент a – положительный (он отвечает за направленность вверх ветвей параболы), и когда положительно значение дискриминанта квадратного трехчлена a·x 2 +b·x+c (при этом трехчлен имеет два корня, которые мы обозначили как x 1 и x 2 , причем приняли, что x 1 0 , D=b 2 −4·a·c=(−1) 2 −4·1·(−6)=25>0 , x 1 =−2 , x 2 =3 .

    Давайте для наглядности изобразим красным цветом части параболы, расположенные выше оси абсцисс, а синим цветом – расположенные ниже оси абсцисс.

    Теперь выясним, какие промежутки этим частям соответствуют. Определить их поможет следующий чертеж (в дальнейшем подобные выделения в форме прямоугольников будем проводить мысленно):

    Так на оси абсцисс оказались подсвечены красным цветом два промежутка (−∞, x 1) и (x 2 , +∞) , на них парабола выше оси Ox , они составляют решение квадратного неравенства a·x 2 +b·x+c>0 , а синим цветом подсвечен промежуток (x 1 , x 2) , на нем парабола ниже оси Ox , он представляет собой решение неравенства a·x 2 +b·x+c<0 . Решениями нестрогих квадратных неравенств a·x 2 +b·x+c≥0 и a·x 2 +b·x+c≤0 будут те же промежутки, но в них следует включить числа x 1 и x 2 , отвечающие равенству a·x 2 +b·x+c=0 .

    А теперь кратко: при a>0 и D=b 2 −4·a·c>0 (или D"=D/4>0 при четном коэффициенте b )

    • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x 1)∪(x 2 , +∞) или в другой записи xx 2 ;
    • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, x 1 ]∪ или в другой записи x 1 ≤x≤x 2 ,

    где x 1 и x 2 – корни квадратного трехчлена a·x 2 +b·x+c , причем x 1


    Здесь мы видим параболу, ветви которой направлены вверх, и которая касается оси абсцисс, то есть, имеет с ней одну общую точку, обозначим абсциссу этой точки как x 0 . Представленному случаю отвечает a>0 (ветви направлены вверх) и D=0 (квадратный трехчлен имеет один корень x 0 ). Для примера можно взять квадратичную функцию y=x 2 −4·x+4 , здесь a=1>0 , D=(−4) 2 −4·1·4=0 и x 0 =2 .

    По чертежу отчетливо видно, что парабола расположена выше оси Ox всюду, кроме точки касания, то есть, на промежутках (−∞, x 0) , (x 0 , ∞) . Для наглядности выделим на чертеже области по аналогии с предыдущим пунктом.

    Делаем выводы: при a>0 и D=0

    • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x 0)∪(x 0 , +∞) или в другой записи x≠x 0 ;
    • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, +∞) или в другой записи x∈R ;
    • квадратное неравенство a·x 2 +b·x+c<0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси Ox );
    • квадратное неравенство a·x 2 +b·x+c≤0 имеет единственное решение x=x 0 (его дает точка касания),

    где x 0 - корень квадратного трехчлена a·x 2 +b·x+c .


    В этом случае ветви параболы направлены вверх, и она не имеет общих точек с осью абсцисс. Здесь мы имеем условия a>0 (ветви направлены вверх) и D<0 (квадратный трехчлен не имеет действительных корней). Для примера можно построить график функции y=2·x 2 +1 , здесь a=2>0 , D=0 2 −4·2·1=−8<0 .

    Очевидно, парабола расположена выше оси Ox на всем ее протяжении (нет интервалов, на которых она ниже оси Ox , нет точки касания).

    Таким образом, при a>0 и D<0 решением квадратных неравенств a·x 2 +b·x+c>0 и a·x 2 +b·x+c≥0 является множество всех действительных чисел, а неравенства a·x 2 +b·x+c<0 и a·x 2 +b·x+c≤0 не имеют решений.

И остаются три варианта расположения параболы с направленными вниз, а не вверх, ветвями относительно оси Ox . В принципе их можно и не рассматривать, так как умножение обеих частей неравенства на −1 позволяет перейти к равносильному неравенству с положительным коэффициентом при x 2 . Но все же не помешает получить представление и об этих случаях. Рассуждения здесь аналогичные, поэтому запишем лишь главные результаты.

Алгоритм решения

Итогом всех предыдущих выкладок выступает алгоритм решения квадратных неравенств графическим способом :

    На координатной плоскости выполняется схематический чертеж, на котором изображается ось Ox (ось Oy изображать не обязательно) и эскиз параболы, отвечающей квадратичной функции y=a·x 2 +b·x+c . Для построения эскиза параболы достаточно выяснить два момента:

    • Во-первых, по значению коэффициента a выясняется, куда направлены ее ветви (при a>0 – вверх, при a<0 – вниз).
    • А во-вторых, по значению дискриминанта квадратного трехчлена a·x 2 +b·x+c выясняется, пересекает ли парабола ось абсцисс в двух точках (при D>0 ), касается ее в одной точке (при D=0 ), или не имеет общих точек с осью Ox (при D<0 ). Для удобства на чертеже указываются координаты точек пересечения или координата точки касания (при наличии этих точек), а сами точки изображаются выколотыми при решении строгих неравенств, или обычными при решении нестрогих неравенств.
  • Когда чертеж готов, по нему на втором шаге алгоритма

    • при решении квадратного неравенства a·x 2 +b·x+c>0 определяются промежутки, на которых парабола располагается выше оси абсцисс;
    • при решении неравенства a·x 2 +b·x+c≥0 определяются промежутки, на которых парабола располагается выше оси абсцисс и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);
    • при решении неравенства a·x 2 +b·x+c<0 находятся промежутки, на которых парабола ниже оси Ox ;
    • наконец, при решении квадратного неравенства вида a·x 2 +b·x+c≤0 находятся промежутки, на которых парабола ниже оси Ox и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);

    они и составляют искомое решение квадратного неравенства, а если таких промежутков нет и нет точек касания, то исходное квадратное неравенство не имеет решений.

Остается лишь решить несколько квадратных неравенств с использованием этого алгоритма.

Примеры с решениями

Пример.

Решите неравенство .

Решение.

Нам требуется решить квадратное неравенство, воспользуемся алгоритмом из предыдущего пункта. На первом шаге нам нужно изобразить эскиз графика квадратичной функции . Коэффициент при x 2 равен 2 , он положителен, следовательно, ветви параболы направлены вверх. Выясним еще, имеет ли парабола с осью абсцисс общие точки, для этого вычислим дискриминант квадратного трехчлена . Имеем . Дискриминант оказался больше нуля, следовательно, трехчлен имеет два действительных корня: и , то есть, x 1 =−3 и x 2 =1/3 .

Отсюда понятно, что парабола пересекает ось Ox в двух точках с абсциссами −3 и 1/3 . Эти точки изобразим на чертеже обычными точками, так как решаем нестрогое неравенство. По выясненным данным получаем следующий чертеж (он подходит под первый шаблон из первого пункта статьи):

Переходим ко второму шагу алгоритма. Так как мы решаем нестрогое квадратное неравенство со знаком ≤, то нам нужно определить промежутки, на которых парабола расположена ниже оси абсцисс и добавить к ним абсциссы точек пересечения.

Из чертежа видно, что парабола ниже оси абсцисс на интервале (−3, 1/3) и к нему добавляем абсциссы точек пересечения, то есть, числа −3 и 1/3 . В результате приходим к числовому отрезку [−3, 1/3] . Это и есть искомое решение. Его можно записать в виде двойного неравенства −3≤x≤1/3 .

Ответ:

[−3, 1/3] или −3≤x≤1/3 .

Пример.

Найдите решение квадратного неравенства −x 2 +16·x−63<0 .

Решение.

По обыкновению начинаем с чертежа. Числовой коэффициент при квадрате переменной отрицательный, −1 , поэтому, ветви параболы направлены вниз. Вычислим дискриминант, а лучше – его четвертую часть: D"=8 2 −(−1)·(−63)=64−63=1 . Его значение положительно, вычислим корни квадратного трехчлена: и , x 1 =7 и x 2 =9 . Так парабола пересекает ось Ox в двух точках с абсциссами 7 и 9 (исходное неравенство строгое, поэтому эти точки будем изображать с пустым центром).Теперь можно сделать схематический рисунок:

Так как мы решаем строгое квадратное неравенство со знаком <, то нас интересуют промежутки, на которых парабола расположена ниже оси абсцисс:

По чертежу видно, что решениями исходного квадратного неравенства являются два промежутка (−∞, 7) , (9, +∞) .

Ответ:

(−∞, 7)∪(9, +∞) или в другой записи x<7 , x>9 .

При решении квадратных неравенств, когда дискриминант квадратного трехчлена в его левой части равен нулю, нужно быть внимательным с включением или исключением из ответа абсциссы точки касания. Это зависит от знака неравенства: если неравенство строгое, то она не является решением неравенства, а если нестрогое – то является.

Пример.

Имеет ли квадратное неравенство 10·x 2 −14·x+4,9≤0 хотя бы одно решение?

Решение.

Построим график функции y=10·x 2 −14·x+4,9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0,7 , так как D"=(−7) 2 −10·4,9=0 , откуда или 0,7 в виде десятичной дроби. Схематически это выглядит так:

Так как мы решаем квадратное неравенство со знаком ≤, то его решением будут промежутки, на которых парабола ниже оси Ox , а также абсцисса точки касания. Из чертежа видно, что нет ни одного промежутка, где бы парабола была ниже оси Ox , поэтому его решением будет лишь абсцисса точки касания, то есть, 0,7 .

Ответ:

данное неравенство имеет единственное решение 0,7 .

Пример.

Решите квадратное неравенство –x 2 +8·x−16<0 .

Решение.

Действуем по алгоритму решения квадратных неравенств и начинаем с построения графика. Ветви параболы направлены вниз, так как коэффициент при x 2 отрицательный, −1 . Найдем дискриминант квадратного трехчлена –x 2 +8·x−16 , имеем D’=4 2 −(−1)·(−16)=16−16=0 и дальше x 0 =−4/(−1) , x 0 =4 . Итак, парабола касается оси Ox в точке с абсциссой 4 . Выполним чертеж:

Смотрим на знак исходного неравенства, он есть <. Согласно алгоритму, решение неравенства в этом случае составляют все промежутки, на которых парабола расположена строго ниже оси абсцисс.

В нашем случае это открытые лучи (−∞, 4) , (4, +∞) . Отдельно заметим, что 4 - абсцисса точки касания - не является решением, так как в точке касания парабола не ниже оси Ox.

Ответ:

(−∞, 4)∪(4, +∞) или в другой записи x≠4 .

Обратите особое внимание на случаи, когда дискриминант квадратного трехчлена, находящегося в левой части квадратного неравенства, меньше нуля. Здесь не нужно спешить и говорить, что неравенство решений не имеет (мы же привыкли делать такой вывод для квадратных уравнений с отрицательным дискриминантом). Дело в том, что квадратное неравенство при D<0 может иметь решение, которым является множество всех действительных чисел.

Пример.

Найдите решение квадратного неравенства 3·x 2 +1>0 .

Решение.

Как обычно начинаем с чертежа. Коэффициент a равен 3 , он положителен, следовательно, ветви параболы направлены вверх. Вычисляем дискриминант: D=0 2 −4·3·1=−12 . Так как дискриминант отрицателен, то парабола не имеет с осью Ox общих точек. Полученных сведений достаточно для схематичного графика:

Мы решаем строгое квадратное неравенство со знаком >. Его решением будут все промежутки, на которых парабола находится выше оси Ox . В нашем случае парабола выше оси абсцисс на всем ее протяжении, поэтому искомым решением будет множество всех действительных чисел.

Ox , а также к ним нужно добавить абсциссы точек пересечения или абсциссу точки касания. Но по чертежу хорошо видно, что таких промежутков нет (так как парабола всюду ниже оси абсцисс), как нет и точек пересечения, как нет и точки касания. Следовательно, исходное квадратное неравенство не имеет решений.

Ответ:

нет решений или в другой записи ∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.