Физические и химические свойства:
Четыреххлористый углерод (тетрахлометан, CHCl 4) - бесцветная жидкость. Раств. воды в ССl 4 около 1% (24°). Не воспламеняется. При соприкосновении с пламенем или накаленными предметами разлагается, образуя фосген. Может содержать в виде примесей СS 2 , НСl, Н 2 S, органические сульфиды.

Область применения:
Применяется как растворитель; для экстрагирования жиров и алкалоидов; при производстве фреонов; в огнетушителях; для чистки и обезжиривания одежды в быту и производственных условиях.

Получение:
Получается хлорированием СS 2 в присутствии катализаторов; каталитическим хлорированием СН 4 (вместе с СН 2 С1 2 и СНСl 3); накаливанием смеси угля и СаСl 2 при температуре вольтовой дуги.

Общий характер токсического действия:

Наркотик с меньшей силой действия паров, чем хлороформ. При любом пути поступления вызывает тяжелые повреждения печени: центролобулярный некроз и жировую дегенерацию. Одновременно поражает и другие органы: почки (проксимальные отделы почечных канальцев), альвеолярные мембраны и сосуды легких. Поражения в почках и легких менее значительны, развиваются, как правило, вслед за поражением печени и как результат нарушения общего обмена, но в ряде случаев играют существенную роль в картине и исходе отравления. Наиболее ранним признаком токсического действия считают изменение уровня ряда ферментов крови. Выявлена большая способность печени к регенерации после отравления. Прием алкоголя во время вдыхания паров Ч. У., охлаждение, повышенное содержание кислорода в воздухе усиливают токсическое действие. При гашении пламени огнетушителями и вообще при сильном нагревании отравления могут возникнуть от вдыхания продуктов термического разложения Ч. У.

Согласно существующим взглядам на патогенез токсического действия Ч. У., оно связано со свободнорадикальными метаболитами (типа СС1 з), образующимися в результате гемолитического разрыва молекул ССl 4 . В результате усиления перекисного окисления липидных комплексов внутриклеточных мембран нарушаются активность ферментов, ряд функций клетки (синтез белков, обмен ß-липопротеидов, метаболизм лекарств), возникает деструкция нуклеотидов и т. д. Предполагают, что основным местом образования свободнораднкальных метаболитов являются эндоплазматнческая сеть и микросомы клетки.

Картина отравления:

При вдыхании очень высоких концентраций (при неосторожном входе в цистерны и резервуары, при тушении пожаров огнетушителями с Ч. У. в малых замкнутых помещениях и т. д.) возможны либо внезапная смерть, либо потеря сознания или наркоз. При более легком отравлении и преобладании дей­ствия на нервную систему характерны головная боль, головокружение, тошнота, рвота, спутанность или потеря сознания. Выздоровление наступает относительно быстро. Возбуждение носит иногда характер сильных приступов буйного состоя­ния. Описаны отравления в виде энцефаломиелита, мозжечковой дегенерации, периферических невритов, невритов зрительного нерва, кровоизлияний и жировой эмболии мозга. Известен случай эпилептиформных судорог и потери сознания на 4-й день после отравления без значительных поражений печени и почек. На вскрытии (в случае быстрой смерти) - только кровоизлияния и отек мозга, эмфизема легких.

Если отравление развивается медленно, к явлениям поражения центральной нервной системы в течение 12-36 ч присоединяются сильная икота, рвота, часто длительная, понос, иногда кишечное кровотечение, желтушность, множественные кровоизлияния. Позднее - увеличение и болезненность печени, выраженная желтуха. Еще позже появляются симптомы тяжелого поражения почек. В иных случаях симптомы поражения почек предшествуют признакам заболевания печени. Наблюдения показали, что поражения печени резко выражены в первый период и тем сильнее, чем быстрее наступает смерть; при более поздней гибели в ткани печени имеются уже регенеративные процессы. Изменения же в почках при ранней гибели незначительны. При поражении почек уменьшается количество мочи; в моче - белок, кровь, цилиндры. В крови повышено содержание небелкового азота, но понижено содержание хлоридов, кальция, белков. В тяжелых случаях наступает олигурия или полная анурия (нарушаются и фильтрационная, и секреторная функции почек). Высокое кровяное давление, отеки, судорожные припадки, уремия- Может развиться отек легких, часто являющийся непосредственной причиной смерти (иногда отек объясняют введением избытка жидкости при лечении). В более благоприятных случаях после анурии - обильный диурез, постепенное Исчезновение патологических элементов в моче, полное восстановление функции почек. Иногда, по-видимому при не очень высоких концентрациях Ч.У., единственным признаком отравления может быть уменьшение или прекращение выделения мочи.

Следствием острого отравления парами Ч. У. могут быть язва двенадцатиперстной кишки, некрозы поджелудочной железы, анемия, лейкоцитоз, лимфопения, изменения в миокарде, острый психоз (Васильева). Исходом отравления может быть желтая атрофия печени, а также ее цирроз.

При приеме Ч. У. внутрь картина отравления такая же, как и при вдыхании паров, хотя есть указания иа преимущественное поражение в этих случаях печени.

Наиболее характерные патологоанатомические изменения: паренхиматозное и жировое перерождение печени, а также многочисленные некрозы в ней; острый токсический нефроз; нефрозонефрит (поражаются канальцы почек на всем их протяжении); отек мозга; воспаление и отек легких; миокардит.

Токсические концентрации, вызывающие острое отравление.

Для человека порог восприятия запаха- 0,0115 мг/л, а концентрация, действующая на световую чувствительность глаза- 0,008 мг/л (Белков). При 15 мг/л через 10 мин головная боль, тошнота, рвота, учащение пульса; при 8 мг/л то же через 15 мин, а при 2 мг/л - через 30 мин. У рабочих при 8-часовом воздействии концентрации 1,2 мг/л наблюдались усталость и сонливость. При чистке пола Ч. У. (концентрация в воздухе 1,6 мг/л) рабочий через 15 мин почувствовал головную боль, головокружение и вынужден был оставить работу. Отравление оказалось смертельным (пострадавший был алкоголиком). Описано массовое отравление при чистке змеевиков испарителя на корабле (концентрация в воздухе 190 мг/л). Пострадавшие, за исключением одного, выжили. Смертельным может быть воздействие концентрации 50 мг/л при вдыхании в течение 1 ч. Известно тяжелое отравление с поражением печени, почек и кишечным кровотечением при работе 2 смены подряд в обычных условиях промывания приборов.

При приеме внутрь 2-3 мл Ч. У. уже могут возникнуть отравлении; 30- 50 мл приводят к тяжелой и смертельной интоксикации. Описан случаи массового отравления с 20 смертельными исходами при употреблении внутрь средства для мытья волос, содержавшего 1,4% Ч. У. (остальное - спирт). У пострадавших - бронхит, воспаление легких, кровавая рвота, понос, поражения печени и почек. Однако известен случай выздоровления после приема 220 мл Ч. У. при развившемся наркозе и тяжелой недостаточности почек. Для промывания желудка использовалось парафиновое (вазелиновое) масло.

При хронических отравлениях в относительно легких случаях наблюдается: усталость, головокружение, головная боль, боли в разных частях тела, мышечное дрожание, ухудшение памяти, инертность, похудание, сердечные расстройства, раздражение слизистых оболочек носа и горла, дизурические расстройства. Чаще всего жалобы на боли в животе, отсутствие аппетита, тошноту. Обнаруживаются увеличение и болезненность печени; изменение моторики, спазмы разных отделов кишечника, билирубинемия и др.

На коже тетрахлорметан может вызывать дерматиты, иногда экземы, крапивницу. Раздражает кожу сильнее, чем бензин. При погружении большого пальца руки в Ч, У, на 30 мин через 7-10 мин появляется чувство холода и жжения. После эрсепоаиции- эритема, проходящая через 1-2 ч. Описан случай полиневрита в результате постоянного соприкосновения Ч. У. с кожей во время работы. В большом количестве проникает через обожженную кожу; вероятно» возможны отравления при тушении горящей на людях одежды с помощью Ч. У.

Неотложная помощь.

При остром ингаляционном отравлении - свежий воздух, покой. Длительное вдыхание увлажненного кислорода с использованием носовых катетеров (непрерывное в течение первых 2-4 ч; в последующем по 30- 40 мнн с перерывами по 10-15 мин). Сердечные средства: камфара (20%), кофеин (10%). кордиамин (25%) по 1-2 мл подкожно; успокаивающие средства, крепкий сладкий чай. Внутривенно ввести 20-30 мл 40% раствора глюкозы с 5 мл 5% аскорбиновой кислоты, 10 мл 10% раствора хлористого кальция. При икоте, рвоте - внутримышечно 1-2 мл 2,5% раствора аминазина с 2 мл 1% раствора новокаина. При угнетении дыхания - вдыхание карбогена повторно по 5-10 мин, внутривенно 10-20 мл 0,5% раствора бемегрида, подкожно 1 мл 10% раствора коразола. При резком ослаблении (остановке) дыхания - искусственное дыхание методом «рот в рот» с переходом на управляемое. В тяжелых случаях немедленная госпитализация в реанимационный центр.

При приеме яда внутрь - тщательное промывание желудка через зонд, универсальный антидот (ТУМ), 100-200 мл вазелинового масла с последующей дачей солевого слабительного; очищение кишечника до чистых промывных вод (сифонная клизма); Кровопускание (150-300 мл) с последующим частичным кровозамещением. Для усиления диуреза введение в вену 50-100 мл 30% мочевины на 10% растворе глюкозы или 40 мг лазикса. При развитии коллаптоидного состояния- внутривенно 0,5 мл 0,05% раствора строфантина в 10-20 мл 20% раствора глюкозы,или коргликон (0,5-1 мл 0,06% раствора в 20 мл 40% раствора глюкозы); по показаниям - мезатон. В дальнейшем для восстановления кислотно-щелочного равновесия - внутривенное капельное введение 300-500 мл 4% раствора бикарбоната натрия. Рекомендуются витамины В6 и С, липоевая кислота, унитиол (5% раствор внутримышечно по 5 мл 3-4 раза в день в первые сутки, 2-3 раза в день на вторые и третьи сутки).

Противопоказаны: сульфаниламидные препараты, адреналин и хлорсодержащие снотворные (хлоралгидрат и др.). Не допустим прием алкоголя и жиров!

По материалам из книги: Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей. Изд. 7-е, пер. и доп. В трех томах. Том I. Органические вещества. Под ред. засл. деят. науки проф. Н. В. Лазарева и докт. мед. наук Э. Н. Левиной. Л., «Химия», 1976.

Методы очистки органических растворителей зависят от природы и предназначения растворителя. В большинстве случаев органические растворители представляют собой индивидуальные соединения и могут быть охарактеризованы их физико-химическими показателями. Самая элементарная операция очистки растворителя - простая или фракционная перегонка. Однако перегонкой часто не удается освободиться от ряда примесей, в том числе и от малых количеств воды.

Традиционными методами очистки можно получить растворитель приблизительно 100% чистоты. С помощью адсорбентов, в частности молекулярных сит (цеолитов), эта задача решается более эффективно и с меньшей затратой времени. В лабораторных условиях для этой цели чаще всего применяют иониты - цеолиты марок NaA или КА.

При приготовлении чистых безводных растворителей следует особо строго соблюдать меры предосторожности, так как большинство органических растворителей - горючие вещества, пары которых образуют с воздухом взрывоопасные смеси, а в некоторых из них (простые эфиры) при длительном хранении образуются взрывчатые перекисные соединения. Многие органические растворители весьма токсичны, как при вдыхании их паров, так и при действии их на кожу.

Все операции с легковоспламеняющимися и горючими органическими растворителями должны проводиться в вытяжном шкафу при работающей вентиляции, выключенных газовых горелках и электронагревательных приборах. Нагревать и перегонять жидкости следует в вытяжном шкафу на предварительно нагретых банях, заполненных соответствующим теплоносителем. При перегонке органической жидкости необходимо постоянно следить за работой холодильника.

Если легковоспламеняющиеся растворители (бензин, диэтиловый эфир, сероуглерод и др.) случайно прольются, необходимо немедленно погасить все источники открытого огня и выключить электронагревательные приборы (днем обесточить рабочее помещение). Место, где пролита жидкость, следует засыпать песком, загрязненный песок собрать деревянным совком и высыпать в контейнер для мусора, установленный на открытом воздухе.

При высушивании растворителей не следует применять активные высушивающие средства до тех пор, пока не проведена предварительная грубая сушка с помощью обычных осушающих средств. Так, запрещается сушить сырой диэтиловый эфир металлическим натрием без предварительной его сушки прокаленным CaCl2.

При работе с простыми эфирами и другими веществами (диэтиловый эфир, диоксан, тетрагидрофуран), в процессе хранения которых могут образоваться перекисные соединения, сначала из них удаляют перекиси, а затем перегоняют и осушают. Перегонять безводные органические растворители надо осторожно. Все элементы установки для перегонки (перегонная колба, дефлегматор, холодильник, алонж, приемник дистиллята) предварительно высушивают в сушильном шкафу. Перегонку проводят без доступа воздуха, а алонж снабжают хлоркальциевой трубкой, наполненной аскаритом и плавленым CaCl2 для поглощения СO2 и Н2O. Первую порцию дистиллята, служащую для промывки всей аппаратуры, целесообразно отбросить.

Ниже рассматриваются методы очистки и обезвоживания наиболее употребительных растворителей.

Ацетон

Ацетон СН3СОСН3 - бесцветная жидкость; d25-4 = 0,7899; tкип = 56,24 °С; n20-D = 1,3591. Легко воспламеняется. Пары образуют с воздухом взрывоопасные смеси. Технический ацетон обычно содержит воду, с которой он смешивается в любых соотношениях. Иногда ацетон загрязнен метиловым спиртом, уксусной кислотой и восстанавливающими веществами.

Пробу на присутствие восстанавливающих веществ в ацетоне проводят следующим образом. К 10 мл ацетона прибавляют 1 каплю 0,1% водного раствора KMnO4; через 15 мин при комнатной температуре раствор не должен обесцветиться.

Для очистки ацетон несколько, часов нагревают с безводным К2СО3 (5% (масс.)) в колбе с обратным холодильником, затем жидкость переливают в другую колбу с дефлегматором высотой 25-30 см и перегоняют над безводным К2СО3 (около 2% (масс.)) и кристаллическим KMnO4, который добавляют к ацетону до появления устойчивой фиолетовой окраски на водяной бане. В полученном ацетоне уже нет метилового спирта, но есть незначительное количество воды.

Для полного удаления воды ацетон повторно перегоняют над безводным CaCl2. Для этого в 2-литровую круглодонную колбу, снабженную эффективным обратным холодильником, закрытым хлоркальциевой трубкой с CaCl2, вливают 1 л ацетона, вносят 120 г CaCl2 и кипятят на водяной бане с закрытым электрическим обогревом 5-6 ч. Затем реакционную колбу охлаждают и переливают ацетон в другую аналогичную колбу со свежей порцией CaCl2 и вновь кипятят 5-6 ч. После этого обратный холодильник заменяют на нисходящий, к которому при помощи алонжа, соединенного с хлоркальциевой трубкой, наполненной CaCl2, присоединяют склянку-приемник, охлаждаемую льдом, и перегоняют ацетон над CaCl2.

Вместо столь длительной и трудоемкой операции, которая часто приводит к конденсации ацетона, лучше использовать цеолит NaA. При длительном выдерживании ацетона над этим цеолитом (5% (масс.)) достигается абсолютирование ацетона.

В небольших количествах очень чистый ацетон может быть получен из аддукта (продукта присоединения) ацетона и NaI, который уже при слабом нагревании разлагается, выделяя ацетон. Для этого при нагревании на водяной бане растворяют 100 г NaI в 440 мл сухого свежеперегнанного ацетона. Образующийся раствор быстро охлаждают до -3°С, погружая сосуд в смесь льда с NaCl. Выделившийся твердый аддукт NaI-C3H6O отделяют на воронке Бюхнера, переносят в колбу установки для перегонки и нагревают на водяной бане. При легком нагревании аддукт разлагается, и освобождающийся ацетон отгоняется. Дистиллят сушат безводным CaCl2 и повторно перегоняют с дефлегматором над CaCl2. Регенерированный NaI может быть вновь применен для этой же реакции.

Экспрессный способ очистки ацетона от метилового спирта и восстанавливающих веществ заключается в следующем: к 700 мл ацетона в колбе вместимостью 1 л приливают раствор 3 г AgNO3. в 20 мл дистиллированной воды и 20 мл 1 н. раствора NaOH. Смесь встряхивают в течение 10 мин, после чего осадок отфильтровывают на воронке со стеклянным фильтром, а фильтрат сушат CaSO4 и перегоняют с дефлегматором над CaCl2.

Ацетонитрил

Ацетонитрил CH3CN - бесцветная жидкость с характерным эфирным запахом; d20-4 = 0,7828; tкип = 81,6°С; n20-D = 1,3442. С водой смешивается во всех отношениях и образует азеотропную смесь (16% (масс.) Н2O) с tкип = 76°С. Хороший растворитель для ряда органических веществ, в частности хлоргидратов аминов. Используется также в качестве среды для проведения некоторых реакций, которые он ускоряет каталитически.

Ацетонитрил - сильный ингаляционный яд и способен всасываться через кожу.

Для абсолютирования ацетонитрил дважды перегоняют над P4O10 с последующей перегонкой над безводным К2СO3 для удаления следов Р4О10.

Можно ацетонитрнл предварительно высушить над Na2SO4 или MgSO4, затем перемешать с СаН2 до прекращения выделения газа (водорода) и перегнать над Р4О10 (4-5 г/л). Дистиллят кипятят с обратным холодильником над СаН2 (5 г/л) не менее 1 ч, затем медленно перегоняют, отбрасывая первые 5 и последние 10% дистиллята.

Бензол

Бензол С6Н6 - бесцветная жидкость; d20-4 = 0,8790; tпл = 5,54 °С; tкип = 80 10°С; n20-D = 1,5011. Бензол и его гомологи - толуол и ксилолы - широко используются в качестве растворителей и среды для азеотропной сушки. Работать с бензолом следует осторожно из-за его горючести и токсичности, а также из-за образования с воздухом взрывоопасных смесей.

Пары бензола при многократном воздействии нарушают нормальную функцию кроветворных органов; в жидком состоянии бензол сильно всасывается через кожу и раздражает ее.

Технический бензол содержит до 0,02% (масс.) воды, немного тиофена и некоторые другие примеси.

Бензол образует с водой азеотропную смесь (8,83% (масс.) Н2O) с tкип = 69,25°С. Поэтому при перегонке влажного бензола вода практически полностью отгоняется с первыми порциями дистиллята (мутная жидкость), которые отбрасывают. Как только начнет перегоняться прозрачный дистиллят, можно считать процесс осушения завершенным. Доосушение перегнанного бензола обычно производят прокаленным CaCl2 (в течение 2-3 суток) и натриевой проволокой.

В холодное время года надо следить за тем, чтобы перегоняемый бензол не закристаллизовался в трубке холодильника, омываемой холодной водой (4-5°С).

Бензол и другие углеводороды, высушенные металлическим натрием, гигроскопичны, т. е. могут поглощать влагу.

Товарный технический бензол содержит до 0,05% (масс.) тиофена C4H4S (tкип = 84,12°С; tпл = 38,3°С), который нельзя отделить от бензола ни фракционной перегонкой, ни кристаллизацией (вымораживанием). Тиофен в бензоле обнаруживают следующим образом: раствор 10 мг изатина в 10 мл конц. H2SO4 встряхивают с 3 мл бензола. В присутствии тиофена сернокислотный слой окрашивается в сине-зеленый цвет.

Бензол очищают от тиофена многократным встряхиванием с конц. H2SO4 при комнатной температуре. В этих условиях сульфируется преимущественно тиофен, а не бензол. На 1 л бензола берут 80 мл кислоты. Первая порция H2SO4 окрашивается в сине-зеленый цвет. Нижний слой отделяют, а бензол встряхивают с новой порцией кислоты. Очистку ведут до тех пор, пока не будет достигнуто слабо-желтое окрашивание кислоты. После отделения слоя кислоты бензол промывают водой, затем 10% раствором Na2CO3 и снова водой, после чего бензол перегоняют.

Более эффективный и простой метод очистки бензола от тиофена - кипячение 1 л бензола с 100 г никеля Ренея в колбе с обратным холодильником в течение 15-30 мин.

Еще один способ очистки бензола от тиофена заключается в дробной кристаллизации его из этилового спирта. Насыщенный раствор бензола в спирте охлаждают примерно до -15°С, быстро отфильтровывают твердый бензол и перегоняют.

Диметилсульфоксид

Диметилсульфоксид (CH3)2SO - бесцветная сиропообразная жидкость без выраженного запаха; d25-4 = 1,1014; tкип = 189°С (с разложением); tпл = 18,45 °С; n25-D = 1,4770. Смешивается с водой, спиртами, ацетоном, этилацетоном, диоксаном, пиридином и ароматическими углеводородами, но не смешивается с алифатическими углеводородами. Универсальный растворитель для органических соединений: окиси этилена, гетероциклических соединений, камфоры, смол, сахаров, жиров и др. Он растворяет также и многие неорганические соединения, например при 60°С растворяет 10,6% (масс.) KNO3 и 21,8% CaCl2. Диметилсульфоксид практически не токсичен.

Для очистки диметилсульфоксид выдерживают в течение суток над активным Al2O3, после чего дважды перегоняют при давлении 267-400 Па (2-3 мм рт. ст.) над плавленым КОН (или ВаО) и хранят над цеолитом NaA.

Под действием восстановителей диметилсульфоксид превращается в сульфид (CH3)2S, а под действием окислителей - в сульфон (CH3)2SO2, несовместим с хлорангидридами неорганических и органических кислот.

N,N-Диметилформамид

N,N-Диметилформамид HCON(CH3)2 - бесцветная легкоподвижная жидкость со слабым специфическим запахом; d25-4 = 0,9445; tкип = 153°С; n24-D = 1,4269. Смешивается в любых отношениях с водой, спиртом, ацетоном, эфиром, хлороформом, сероуглеродом, галогенсодержащими и ароматическими соединениями; алифатические углеводороды растворяет лишь при нагревании.

Диметилформамид перегоняется при атмосферном давлении без разложения; разлагается под действием ультрафиолетовых лучей с образованием диметиламина и формальдегида. Реактив диметилформамид, кроме метиламина и формальдегида, в качестве примесей может содержать метилформамид, аммиак и воду.

Диметилформамид очищают следующим образом: к 85 г диметилформамида прибавляют 10 г бензола и 4 мл воды и смесь перегоняют. Вначале отгоняется бензол с водой и другими примесями, а затем чистый продукт.

Диэтиловый эфир

Диэтиловый эфир (C2H5)2O - бесцветная легкоподвижная летучая жидкость со своеобразным запахом; d20-4 = 0,7135; tкип = 35,6°С; n20-D = 1,3526. Чрезвычайно легко воспламеняется; пары образуют с воздухом взрывоопасные смеси. Пары тяжелее воздуха примерно в 2,6 раза и могут стелиться по поверхности рабочего стола. Поэтому необходимо следить за тем, чтобы поблизости (до 2-3 м) от места работы с эфиром все газовые горелки были потушены, а электроплитки с открытой спиралью отключены от сети.

При хранении диэтилового эфира под действием света и кислорода воздуха в нем образуются взрывчатые перекисные соединения и ацетальдегид. Перекисные соединения являются причиной чрезвычайно сильных взрывов, особенно при попытке перегнать эфир досуха. Поэтому при определении температуры кипения и нелетучего остатка эфир следует предварительно проверить на содержание перекисей. При наличии перекисей эти определения проводить нельзя.

Для обнаружения перекиси в диэтиловом эфире предложены многие реакции.

1. Реакция с йодидом калия KI. Несколько миллилитров эфира встряхивают с равным объемом 2% водного раствора KI, подкисленного 1-2 каплями HCl. Появление коричневого окрашивания указывает на присутствие перекисей.

2. Реакция с титанилсульфатом TiOSO4. Реактив готовят растворением 0,05 г TiOSO4 в 100 мл воды, подкисленной 5 мл разбавленной H2SO4 (1:5). При встряхивании 2-3 мл этого реактива с 5 мл испытуемого эфира, содержащего перекисные соединения, появляется желтая окраска.

3. Реакция с бихроматом натрия Na2Cr2O7. К 3 мл эфира прибавляют 2-3 мл 0,01% водного раствора Na2Cr2O7 и одну каплю разбавленной H2SO4 (1:5). Смесь сильно взбалтывают. Синяя окраска эфирного слоя указывает на присутствие перекисей.

4. Реакция с ферротиоцианатом Fe(SCN)2. Бесцветный раствор Fe(SCN)2 под действием капли жидкости, содержащей перекись, окрашивается в красный цвет вследствие образования ферритиоцианата (Fe2+ > Fe3+). Эта реакция позволяет обнаруживать перекиси в концентрации до 0,001% (масс.). Реактив готовят следующим образом: 9 г FeSO4-7H2O растворяют в 50 мл 18% НСl. К раствору в открытом сосуде добавляют гранулированный цинк и 5 г тиоцианата натрия NaSCN; после исчезновения красного окрашивания добавляют еще 12 г NaSCN, осторожно взбалтывают и раствор отделяют декантацией.

Чтобы удалить перекиси, применяют сульфат железа (II). При взбалтывании 1 л эфира обычно берут 20 мл раствора, приготовленного из 30 г FeSO4-7H2O, 55 мл Н2O и 2 мл конц. H2SO4. После промывания эфир встряхивают с 0,5% раствором KMnO4 для окисления ацетальдегида в уксусную кислоту. Затем эфир промывают 5% раствором NaOH и водой, сушат 24 ч над CaCl2 (150-200 г CaCl2 на 1 л эфира). После этого отфильтровывают CaCl2 на большом складчатом бумажном фильтре и собирают эфир в склянку из темного стекла. Склянку плотно закрывают корковой пробкой со вставленной в нее изогнутой под острым углом хлоркальциевой трубкой, наполненной CaCl2 и тампонами из стеклянной ваты. Затем, открыв склянку, быстро вносят в эфир натриевую проволоку, из расчета 5 г на 1 л эфира.

Через 24 ч, когда перестанут выделяться пузырьки водорода, добавляют еще 3 г натриевой проволоки на 1 л эфира и спустя 12 ч эфир переливают в колбу для перегонки и перегоняют над натриевой проволокой. Приемник должен быть защищен хлоркальциевой трубкой с CaCl2. Дистиллят собирают в склянку из темного стекла, которую после внесения 1 г натриевой проволоки на 1 л эфира закрывают корковой пробкой с хлоркальциевой трубкой и хранят в холодном и темном месте.

Если поверхность проволоки сильно изменилась и при добавлении проволоки снова выделяются пузырьки водорода, то эфир следует профильтровать в другую склянку и добавить еще порцию натриевой проволоки.

Удобный и весьма эффективный способ очистки диэтилового эфира от перекисей и одновременно от влаги - пропускание эфира через колонку с активным Al2O3. Колонки высотой 60-80 см и диаметром 2-4 см, заполненной 82 г Al2O3, достаточно для очистки 700 мл эфира, содержащего значительное количество перекисных соединений. Отработанный Al2O3 легко регенерировать, если пропустить через колонку 50% подкисленный водный раствор FeSO4-7H2O, промыть водой, высушить и провести термическую активацию при 400-450 °С.

Абсолютный эфир - весьма гигроскопичная жидкость. О степени поглощения влаги эфиром при его хранении можно судить по посинению безводного белого порошка CuSO4 при внесении его в эфир (образуется окрашенный гидрат CuSO4-5H2O).

Диоксан

Диоксан (СН2)4O - бесцветная горючая жидкость со слабым запахом; d20-4 = 1,03375; tкип = 101,32 °С; tпл = 11,80° С; n20-D = 1,4224. Смешивается с водой, спиртом и эфиром в любых отношениях. Образует с водой и спиртом азеотропные смеси.

Технический диоксан содержит в качестве примесей ацеталь этиленгликоля, воду, ацетальдегид и перекиси. Способ очистки диоксана следует выбирать в зависимости от степени его загрязнения, которую определяют, добавляя к диоксану металлический натрий. Если при этом образуется коричневый осадок, то диоксан сильно загрязнен; если поверхность натрия изменяется незначительно, то диоксан содержит мало примесей и его очищают, перегоняя над натриевой проволокой.

Сильно загрязненный диоксан очищают следующим образом: 0,5 л диоксана, 6 мл конц. НСl и 50 мл Н2O нагревают на силиконовой (масляной) бане в токе азота в колбе с обратным холодильником при 115-120 °С в течение 12 ч.

После охлаждения жидкость встряхивают с небольшими порциями плавленого КОН для удаления воды и кислоты. Диоксан образует верхний слой, его отделяют и сушат свежей порцией КОН. Затем диоксан переносят в чистую перегонную колбу и нагревают с обратным холодильником над 3-4 г натриевой проволоки в течение 12 ч. Очистка считается законченной, если поверхность натрия остается неизменной. Если натрий весь прореагировал, то необходимо добавить свежую порцию и продолжить высушивание. Диоксан, не содержащий перекисных соединений, перегоняют на колонке или с эффективным дефлегматором при обычном давлении. Очистка диоксана от перекисей проводится, так же, как и очистка диэтилового эфира.

Метиловый спирт (метанол)

Метиловый спирт (метанол) СН3ОН - бесцветная легкоподвижная горючая жидкость, с запахом, подобным запаху этилового спирта; d20-4 = 0,7928; tкип = 64,51 °С; n20-D = 1,3288. Смешивается во всех отношениях с водой, спиртами, ацетоном и другими органическими растворителями; не смешивается с алифатическими углеводородами. Образует азеотропные смеси с ацетоном (tкип = 55,7°С), бензолом (tкип = 57,5 °С), сероуглеродом (tкип = 37,65 °С), а также со многими другими соединениями. С водой метиловый спирт не образует азеотропных смесей, поэтому большую часть воды можно удалить перегонкой спирта.

Метиловый спирт - сильный яд, поражающий преимущественно нервную систему и кровеносные сосуды. В организм человека он может поступить через дыхательные пути и кожу. Особенно опасен при приеме внутрь. Применение метилового спирта в лабораторной практике допускается только в тех случаях, когда он не может быть заменен другими, менее токсичными веществами.

Синтетический абсолютированный метиловый спирт, выпускаемый промышленностью, содержит лишь следы ацетона и до 0,1% (масс.) воды. В лабораторных условиях его можно приготовить из технического СН3ОН, в котором содержание этих примесей может достигать 0,6 и даже 1,0%. В колбу вместимостью 1,5 л с обратным холодильником, защищенным хлоркальциевой трубкой с CaCl2, помещают 5 г магниевых стружек, заливают их 60-70 мл метилового спирта, содержащего не более 1% воды, прибавляют инициатор - 0,5 г йода (или соответствующее количество метилйодида, этилбромида) и нагревают до растворения последнего. Когда весь магний перейдет в метилат (на дне колбы образуется белый осадок), к полученному раствору прибавляют 800-900 мл технического СН3ОН, кипятят в колбе с обратным холодильником в течение 30 мин, после чего отгоняют спирт из колбы с дефлегматором высотой 50 см, собирая фракцию с температурой кипения 64,5-64,7°С (при нормальном давлении). Приемник снабжают хлоркальциевой трубкой с CaCl2. Содержание воды в полученном таким способом спирте не превышает 0,05% (масс.). Абсолютированный метиловый спирт сохраняют в сосуде, защищенном от влаги воздуха.

Доосушивание метилового спирта, содержащего 0,5-1% воды, можно осуществить металлическим магнием и без инициирования реакции. Для этого к 1 л СН3ОН прибавляют 10 г магниевых стружек и смесь оставляют в колбе с обратным холодильником, защищенным хлоркальциевой трубкой с CaCl2. Реакция начинается самопроизвольно, и вскоре спирт закипает. Когда весь магний растворится, кипение поддерживают нагреванием на водяной бане еще некоторое время, после чего спирт перегоняют, отбрасывая первую порцию дистиллята.

Безводный метиловый спирт получают также, выдерживая его над цеолитом NaA или КА или пропуская через колонку, заполненную этими молекулярными ситами. Для этого можно воспользоваться колонкой лабораторного типа.

Присутствие ацетона в метиловом спирте устанавливают пробой с нитропруссидом натрия. Спирт разбавляют водой, подщелачивают и прибавляют несколько капель свежеприготовленного насыщенного водного раствора нитропруссида натрия. В присутствии ацетона появляется красная окраска, усиливающаяся при подкислении уксусной кислотой.

Для удаления ацетона предложен следующий способ: 500 мл СН3ОН кипятят несколько часов с 25 мл фурфурола и 60 мл 10% раствора NaOH в колбе с обратным холодильником, а затем отгоняют спирт на эффективной колонке. В колбе остается смола - продукт взаимодействия фурфурола с ацетоном.

Петролейный эфир, бензин и лигроин

При перегонке легкого бензина получают ряд низкокипящих углеводородных фракций, которые применяют в качестве растворителей. Пары этих углеводородов оказывают наркотическое действие.

Промышленность выпускает следующие реактивы:

Большая летучесть петролейного эфира, бензина и лигроина, легкая их воспламеняемость и образование с воздухом взрывоопасных смесей требует особой осторожности при работе с ними.

Петролейный эфир, бензин и лигроин не должны содержать примеси ненасыщенных и ароматических углеводородов.

Присутствие ненасыщенных углеводородов обычно устанавливают двумя реагентами: 2% раствором Br2 в ССl4 и 2% водным раствором KMnO4 в ацетоне. Для этого к 0,2 мл углеводорода в 2 мл СCl4 прибавляют по каплям раствор реагента и наблюдают за изменением окраски. Проба считается отрицательной, если обесцвечивается не более 2-3 капель раствора брома или раствора KMnO4.

Ненасыщенные углеводороды можно удалить многократным 30-минутным встряхиванием на механической качалке порции углеводородов с 10% (об.) конц. H2SO4. После встряхивания с каждой порцией кислоты смеси дают отстояться, затем отделяют нижний слой. Когда слой кислоты перестанет окрашиваться, углеводородный слой энергично встряхивают с несколькими порциями 2% раствора KMnO4 в 10% растворе H2SO4, пока цвет раствора KMnO4 не перестанет изменяться. При этом почти полностью удаляются ненасыщенные углеводороды и частично - ароматические. Чтобы полностью удалить ароматические углеводороды, нужно встряхивать на качалке углеводороды (петролейный эфир и др.) с олеумом, содержащим 8-10% (масс.) SO3. Склянку с притертой пробкой, в которой производят встряхивание, заворачивают в полотенце. После отделения кислотного слоя углеводородную фракцию промывают водой, 10% раствором Na2CO3, снова водой, высушивают над безводным CaCl2 и перегоняют над натриевой проволокой. Рекомендуется хранить петролейный эфир над CaSO4 и перегонять перед употреблением.

Традиционный химический метод очистки насыщенных углеводородов от ненасыщенных очень трудоемок и может быть заменен адсорбцией. Примеси многих ненасыщенных соединений удаляются при пропускании растворителя через стеклянную колонку с активным Al2O3 и особенно на цеолитах, например NaA.

Тетрагидрофуран

Тетрагидрофуран (СН2)4O - бесцветная подвижная жидкость с эфирным запахом; d20-4 = 0,8892; tкип = 66°С; n20-D = 1,4050. Растворяется в воде и большинстве органических растворителей. Образует азеотропную смесь с водой (6% (масс.) Н2O), tкип = 64°С. Тетрагидрофуран склонен к образованию перекисных соединений, поэтому обязательно надо проверить наличие в нем перекисей (см. Диэтиловый эфир). Удалить перекиси можно кипячением с 0,5% суспензией Cu2Cl2 в течение 30 мин, после чего растворитель перегоняют и встряхивают с плавленым КОН. Верхний слой тетрагидрофурана отделяют, вновь добавляют к нему 16% (масс.) КОН и кипятят смесь 1 ч в колбе с обратным холодильником. Затем тетрагидрофуран перегоняют над СаН2 или LiAlH4, отбрасывают 10-15% головной фракции и оставляют около 10% остатка в кубе. Головную фракцию и кубовый остаток присоединяют к техническим продуктам, предназначенным для очистки, а собранную среднюю фракцию досушивают над натриевой проволокой. Очищенный продукт хранят без доступа воздуха и влаги.

Хлороформ

Хлороформ CHCl3 - бесцветная подвижная жидкость с характерным сладковатым запахом; d20-4 = 1,4880; tкип = 61,15°С; n20-D = 1,4455. Растворим в большинстве органических растворителей; практически нерастворим в воде. Образует азеотропную смесь с водой (2,2% (масс.) Н2O), tкип = 56,1 °С. Негорюч и не образует взрывоопасных смесей с воздухом, но токсичен - действует на внутренние органы, особенно на печень.

Хлороформ почти всегда содержит до 1% (масс.) этилового спирта, который добавляют к нему в качестве стабилизатора. Другой примесью хлороформа может быть фосген, образующийся при окислении хлороформа на свету.

Пробу на присутствие фосгена выполняют следующим образом: 1 мл 1% раствора n-диметиламинобензальдегида и дифениламина в ацетоне встряхивают с хлороформом. При наличии фосгена (до 0,005%) через 15 мин возникает интенсивная желтая окраска. Хлороформ очищают трехкратным встряхиванием с отдельными порциями конц. H2SO4. На 100 мл хлороформа каждый раз берут 5 мл кислоты. Хлороформ отделяют, промывают 3-4 раза водой, сушат на CaCl2 и перегоняют.

Очистка хлороформа достигается также медленным пропусканием препарата через колонку, заполненную активным Al2O3 в количестве 50 г на 1 л хлороформа.

Хлороформ следует хранить в склянках из темного стекла.

Четыреххлористый углерод

Четыреххлористый углерод CCl4 - бесцветная негорючая жидкость со сладковатым запахом; d20-4 = 1,5950; tкип = 76,7°С; n25-D = 1,4631. Практически нерастворим в воде. С водой образует азеотропную смесь (4,1% (масс.) Н2O), tкип = 66°С. Растворяет разнообразные органические соединения. Обладает меньшим, чем хлороформ, наркотическим действием, но по токсичности превосходит его, вызывая тяжелые поражения печени.

Четыреххлористый углерод иногда загрязнен сероуглеродом, который удаляют перемешиванием CCl4 при 60°С в колбе с обратным холодильником с 10% (об.) концентрированного спиртового раствора КОН. Эту процедуру повторяют 2-3 раза, после чего растворитель промывают водой, перемешивают при комнатной температуре с небольшими порциями конц. H2SO4 до тех пор, пока она не перестанет окрашиваться. Затем растворитель снова промывают водой, высушивают над CaCl2 и перегоняют над P4O10.

Высушивание CCl4 достигается азеотропной перегонкой. Вода удаляется с первыми мутными порциями дистиллята. Как только начнет перегоняться прозрачная жидкость, ее можно считать безводной.

Этилацетат

Этилацетат СН3СООС2Н5 - бесцветная жидкость с приятным фруктовым запахом; d20-4 = 0,901; tкип = 77,15°С; n20-D = 1,3728. Образует азеотропную смесь с водой (8,2% (масс.) Н2O), tкип = 70,4 °С.

Технический этилацетат содержит воду, уксусную кислоту и этиловый спирт. Предложено много способов очистки этилацетата. По одному из них этилацетат встряхивают с равным объемом 5% раствора NaHCO3 и затем с насыщенным раствором CaCl2. После этого этилацетат сушат К2СО3 и перегоняют на водяной бане. Для окончательной сушки к дистилляту добавляют 5% P4O10 и энергично встряхивают, затем фильтруют и перегоняют над натриевой проволокой.

Этиловый спирт

Этиловый спирт С2Н5ОН - бесцветная жидкость с характерным запахом; d20-4 = 0,7893; tкип = 78,39 °С; n20-D = 1,3611. Образует азеотропную смесь с водой (4,4% (масс.) Н2O). Отличается высокой растворяющей способностью по отношению к самым разнообразным соединениям и неограниченно смешивается с водой и со всеми обычными органическими растворителями. Технический спирт содержит примеси, качественный и количественный состав которых зависит от условий его получения.

Выпускаемый абсолютированный спирт, который получают азеотропной перегонкой 95% технического спирта с бензолом, может содержать небольшие количества воды и бензола (до 0,5% (масс.)).

Обезвоживание 95% спирта можно производить длительным кипячением с прокаленным СаО. На 1 л спирта берут 250 г СаО. Смесь кипятят в 2-литровой колбе с обратным холодильником, закрытым трубкой с СаО, в течение 6-10 ч. После охлаждения колбу присоединяют к установке для перегонки при атмосферном давлении и отгоняют спирт. Выход 99-99,5% спирта 65-70%.

Более высокими обезвоживающими свойствами обладает оксид бария ВаО. Кроме того, ВаО способен несколько растворяться в почти абсолютном спирте, окрашивая его в желтый цвет. По этому признаку определяют, когда процесс абсолютирования завершен.

Дальнейшее обезвоживание 99-99,5% спирта можно провести несколькими методами: с помощью магния (получается этиловый спирт с содержанием воды не более 0,05%), натрия и диэтилового эфира щавелевой кислоты.

В круглодонную колбу вместимостью 1,5 л с обратным холодильником и хлоркальциевой трубкой с CaCl2 вливают 1 л. 99% этилового спирта, после чего небольшими порциями вносят 7 г натриевой проволоки. По растворении натрия к смеси добавляют 25 г диэтилового эфира щавелевой кислоты, кипятят 2 ч и отгоняют спирт.

Аналогично получается абсолютный спирт с помощью диэтилового эфира ортофталевой кислоты. В колбу, снабженную обратным холодильником и хлоркальциевой трубкой с CaCl2, помещают 1 л 95% спирта и растворяют в нем 7 г натриевой проволоки, после чего прибавляют 27,5 г диэтилового эфира фталевой кислоты, кипятят смесь около 1 ч и отгоняют спирт. Если в колбе образуется небольшое количество осадка, то это доказывает, что исходный спирт был достаточно хорошего качества. И наоборот, если выпадает большое количество осадка и кипение сопровождается толчками, то исходный спирт был недостаточно высушен.

Осушка этилового спирта в настоящее время осуществляется в аппаратах колонного типа с цеолитом NaA в качестве насадки. Этиловый спирт, содержащий 4,43% воды, подается на осушку в колонку диаметром 18 мм с высотой слоя насадки 650 мм при скорости 175 мл/ч. В этих условиях за один цикл удается получить 300 мл спирта с содержанием воды не выше 0,1-0,12%. Регенерация цеолита производится в колонке в токе азота при 320 °С в течение 2 ч. При перегонке этилового спирта рекомендуется применять приборы на шлифах; при этом шлифы тщательно очищают и не смазывают. Первую часть дистиллята целесообразно отбросить и перегонку завершить, когда в перегонной колбе останется немного спирта.

СОЮЗ СОВЕТСНИХщириши едеРЕСПУБЛИК 07 С 07 С 19/06 РЕТЕНИ РСКОМУ ичаюю упро- увелистве осу щ нщениченншиткоб ксо золдназол, оРС 12 бщем к отс-Хххлоушкинн н и пеГОСУДАРСТВЕННЫЙ КОНИТЕТ СССР ДЕЛАН ИЗОБРЕТЕНИЙ И О 3 НРЬТЮ ОПИСАНИЕ И(71) Институт неорганической химии..,и электрохимии АН Грузинской ССР"Иностранная литература", 1958,с. 393-396.2. Практикум по органической химииИ., "Иир", 1979, с. 376 (прототип).3 Е.Н.Напвоп, С.Е.Ие 1 оап-"Зпот 8.пцс 1.сЬев. 1 еййег", 971, р.461-472..80295 4)(57) СПОСОБ ОЧИСТКИ, ЧЕТЫ СТОГО УГЛЕРОДА путем осуш ушителем н перегонки, о тй с я тем, что, с цель я технологии процесса и я.степенн осушки, в кач еля используют смесь компл альта формулы СоК С 1 + Сойгде 11- бенз,1,3-тнади1 - бенз,1,3-селенпри массовом соотношении.: Со К С 1 (25-30) :нличестве смеси 2,0-3,0 маношению к исходному четыртому углероду, а стадии орегонки совмещают во времестранстве.117295 2рый включает стадию кипячения растворителя с обратным холодильником втечение 18.ч с использованием в качестве осушителя Р О и последую 5 щую перегонку на колонке. РасходР 05 на 1 л растворителя состав-ляет 25-30 г, а содержание воды вцелевом продукте не ниже, чем0,00523.0 Недостатками известного способаявляются сложность 1,наличие двухстадий - осушка и перегонка и дли" е тельность процесса, что существенноусложняет его технологию, а также15 высокое содержание воды в целевомпродукте.Целью изобретения является упрощение технопогии процесса и увеличение. степени осушки.- 20 Поставленная цель достигаетсятем, что согласно способу очисткичетыреххлористого углерода путемосушки над осушителем и перегонки,у в качестве осушителя используют25 смесь комплексов кобальта форму- лы Изобретение относится к способуочистки четыреххлористого углерода.Вода является основной нежелательной примесью СС и поэтому всеметоды очистки, как правило, включают стадию осушки и перегонки растворителя. Сушка и перегонка завершающие стадии процесса очистки СС 1 ипоэтому удаление воды из СС 1 является важной задачей,СС 1 плохо смешивается с водой (0,08%) н во многихслучаях для очистки достаточно перегонки, Вода при этом удаляется в видазеотропной смеси, которая кипитпри бб С и содержит 95,9 растворитепя. Тройная азеотропная смесь сводой (4,3%) и этанолом (9,7) кипитпри 61,8 С. Когда к очистке СС 1,предъявляются более высокие требо 1 вания, то перегонка без предварительного высушивания растворителя непригодна.Известен способ очистки четыреххлористого углерода, согласно которому СС 1 предварительно высушивают и затем перегоняют на колонке.Осушку осуществляют над СаС 1 ,.аперегонку иад Р 05 СС 1, сушат надпрокаленным СаС 1 и перегоняютиз колбы с эффективным,дефлегмато- З 0ром на водяной бане, а в некоторыхслучаях - из кварцевой колбы сдефлегматором. При использованииСС 14, для термохимнческих измерений растворитель дважды подвергаютфракционной перегонке на колонкес вакуумной рубашкой, каждый разотбрасывая первую и последнюю порциюобъемом по четверти всего количества дистиллята Г 1,.Однако простая перегонка растворителя без применения осушителей нейозволяет получить растворитель снизким содержанием воды. В способах,основанных на применении осушителей и последующей перегонке., необходим предварительный длительныйконтакт растворителя с осушителем,выбор которого для СС 1 ограничен.Среди осушителей прокаленный СаС 1наиболее приемлемый. Показано, что50СС 1, нельзя сушить над натрием, таккак в этих условиях образуется взрывчатая смесь, Этот способ очистки длителен, имеет много ступеней и малоэф"фективен,55 Наиболее близким к изобретению является способ очистки СС 1, кото СоК С 1, + СоК С 1где й" бенз,1,3-тиадиаэол;к - бенз,1,3-селендиазол;при массовом соотношении Со КС 1Со К., С 1 25"30:1 и общем количестве смеси 2,0-3,0 мас,.Ж по отношению к исходному четыреххлористому углероду, а стадии осушки и пере-гонки совмещают во времени и пространстве.Комплексы Со К С 1и Со КС 1попучают по известной методике 3,1.Сущность предлагаемого способа со-,стоит в том, что комплексы кобальтас указанными лигандами Ри К)количественно распадаются в прйсутствии следов воды, Эти комплексынерастворимы во всех обычных раство.- рителях. В растворителях с примесями воды вместо обычного растворе"ния имеет место разрушение комплекса с образованием свободного лиганда.и гидратированного иона кобапьта,В растворителях, содержащих в молекуле трехвалентный атом азота, протекает реакция замещения молекул лиганда молекулами растворителя. К таким растворителям относятся амины,амиды, иитрилы, а также некоторыегетероциклы.г1117295 10 В растворителях, не содержащих трехвапентный атом азота в молекуле, но содержащих примеси воды, в частности в СС 1, в результате протекания реакции в растворе обнаруживают продукты распада комплекса кобальта с серу- или селенсодержащими диазолами, Методом полярографии, а также УФ- и видимыми спектрами получающихся растворов показано, что взаимодействие между лигандом и комплексообразователем в азотсодержащих средах или в средах, содержа.щих следы воды, не имеетместо. Комплексы кобальта.с ароматическими ди азолами можно получить только в абсолютно безводных средах, несодаржащих атом азота. Во всех случаях при внесении указанных комплексов в растворители, содержащие примеси влаги, сумма спектров лиганда и иона кобапьта соответствует получающемуся спектру, а на полярограммах четко Фиксируются волны лнганда и иона кобальта. 25 Реакция распада комппексов кобапьта с указанными диазолами под действием молекул воды протекает очень,быстро и растворитель принимает цвет гндратированного иона кобальта. Мгновенное связывание следов воды осушителем (комплексы кобапьта протекает по механизму образования гид,рата (перевод координированного атома кобальта в комплексе в гндратнро- З 5 .ванный нон в растворен поэтому окрашивание растворителя в цвет гнд,.ратированных ионов кобольта может служить характерным признаком удаления примесей воды из растворителя,Известно, что твердый безводныйимеет бледно голубой цвет ди-, -три-, тетра- и гексагидраты соответственно фиолетовый, пурпур ный, красный и красно-коричневый.:Комплекс кобальта с диазолами представляет собой пластинки оливкового цвета, при внесении которых в СС 14 в зависимости от количества воды в 50 нем растворитель окрашивается в одиниз указанных цветов гидратированного Со. Способность комплексов кобапь" та с бенз,1,3-тиа- и селендиазола" ми разрушаться в присутствии сле" 55 дов воды зависит от природы лиганда, точнее от природы ключевого гетероатома в молекуле лиганда. 4Спедовательно, эффективность указанного комплекса как осушителя также зависит от природы гетероатома (Я, Яе) в лиганде и значительно увеличивается при замене атома серы атомом селена в гетерокольце диазола. Прн очень низкой содержании воды в СС 1 наиболее эффективным осушителем является комплекс кобальта с бенз,1,3-селенпиаэолом. При содержании воды в растворителе в количестве, не превышающем 0,013, осушитепем может служить и комплекс кобальта с бенз,1,3-тиддиаэолом.Следовательно, смесь укаэанных комплексов может служить в качестве осушителя в широком диапазоне содержания воды в растворителе, При глубокой осушке СС 14 комплекс кобальта с бенз,1,3-селендиаэолом можно смешивать в виде примеси к комплексу кобальта с бенз,1,3-тиадиазолом, который будет связывать основное количество воды в растворителе. Необходимую степень очистки СС 1 в каждом конкретном случае можно достичь путем варьирования пропорции компонентов смеси.Однако для того, чтобы композиция обладала максимальной эффективностью как осушитель, необходимо использовать минимальную весовую долю комплекса кобальта с бенз,1,3-селендиаэолом в смеси. Таким образом, одновре" менно с эффектом образования гидрата из безводного комплекса кобальта, которое легко в основу предлагаемого способа, состав осушающей смеси из комппексов кобальта с ароматическими диазолами является харахтер" ным признаком данного метода очист" ки СС 14 . Мгновенное связывание следов воды комплексами кобальта на основе указанных диаэолов при их введении в СС 14 исключает необходимость в предварительном 18-ти часовом кипячении растворителя с обратным холодильником над РО, Поэтому смесь комппексов можно вводить в растворитель непосредственно на стадии перегонки, тем самым совмещая стадии осушки и перегонкиПродукты распада комплексов - ли-ганд ароматический диаэол и гидратированный ион кобальта имеют гораздо более высокую температуру кипения, чем СС, поэтому при перегонке не могут переходить в дистиллят, Последний собирают в приемник с уст-.7295 соотношении комплексов кобальта сбенэ,1,3-тиадиаэолом и бенэ,1,3-селендиаэолом. Результаты приведеныв таблице,ройством для предотвращения контакта дистиллята с воздухом, Избыток смеси комплексов кобальта с диаэолами при ввецении в СС 1 оседает на дне колбы перегонного аппарата, в кото-5 ром очищаемдй растворитель сохраня" ет цвет гидратированного иона кобальта до конца процесса. Содержание воды в дистилляте определяют стандар ным титрованием по Флеру.П р и м е р 1. 300 мп СС+ вносят в колбу перегонного аппарата, добавляют смесь, состоящую из 10 г комплекса кобольта с бенэо,1, 3-тиади азолом и О, 4 г комплекса кобальта сбензот 2,1,3-селендиазолом (общее количество смеси комплексов кобальта 23 и перегоняют. Отбирают фракцию с т.кип, 76,5-77,0 С (" 200 мп). Первую фракцию с т.кип. до 76,5 С 2 отбрасывают (30 мп). Содержаниеводы в дистиляте 0,00073, Скорость пе- р 5 мп/мин. Продолжительность т- О 3 0750 10: 15:1,0007 25 30 0,0005 0 Пр егонки роцесс Таким образом, изобретение обеспечивает упрощение технологии процесса эа счет ликвидации стадии предварительного контакта растворителяЗ 0 с осушителем стадии осушки и перегонки совмещены во времени и про"странстве, сокращение времени,необходимого для очистки СС 1 засчет быстрого связйвания следов во"ды в растворителе смесью комплексовкобальта с ароматическими диа",эолами, и достижение глубины осушки СС 1, до 0,00053 остаточной воды,что увеличивает степень осушки напорядок,Се вноарата, из 14 г 2 1,3-тикоб альоном (общекобальсят в кол добавляют компле кс адиазоло та с бен количест ют фрак" 200 мп)е 0,0005 Ж Продола Хс т одержан коростьжительно одят Составитель А.Артеедактор Н.Джуган Техред И.Аствлош Коррект В,Вутяга Тираж 409рственного комитетаобретений и открытийа, Ж, Раушская н сное д. 4/5 ал ППП "Патент", г.уж ул.Проектная,4 П П П,Патент Зак. 4 мер 2, 300 мп бу перегонного ап смесь, состоящую кобапьта с бенэо и 0,4 г комплекс о,1,3-селендиаэ о смеси комплексо перегоняют, Отбир ип. до 76,5-77 ОС е воды в дистилля перегонки 5 чп/ми ть процессач. м е р ы 3-8. Процесс пропримеру 2 при различномг аказ 7145/16 ВНИИЙИ Госу по делам 113035, Иос

Заявка

3521715, 16.12.1982

ИНСТИТУТ НЕОРГАНИЧЕСКОЙ ХИМИИ И ЭЛЕКТРОХИМИИ АН ГССР

ЦВЕНИАШВИЛИ ВЛАДИМИР ШАЛВОВИЧ, ГАПРИНДАШВИЛИ ВАХТАНГ НИКОЛАЕВИЧ, МАЛАШХИЯ МАРИНА ВАЛЕНТИНОВНА, ХАВТАСИ НАНУЛИ САМСОНОВНА, БЕЛЕНЬКАЯ ИНГА АРСЕНЕВЬНА

МПК / Метки

Код ссылки

Способ очистки четыреххлористого углерода

Похожие патенты

Окисления комплексов кобальта (П) через определенный про. - межуток времени.Это позволяет определять содержание воды в органическом растворителе по градуировочному графику, построенному в координатах "разница оптической плотности. растворов при, 390 нм в отсутствие и в присутствии воды" - 11 концентрация воды в органическом растворителе,П р и м е р 1, В пробирку с при" тертой пробкой объемом 15 мл вносят 5 мл безводного ацетона, приливают с помощью микропипетки 0,025 мл 10 - ного раствора воды н ацетоне, что соответствует содержанию воды в пробе 0,05 , затем прибавляют 1 мл 1.10К раствора безводного хлористого кобальта в ацетоне, 1 мл 2,5.10 2 М раствора 4-аминоантипирина в ацетоне, перемешивают и через 1 мин вводят 2 мл 5,0,10...

Чистого растворителя с несмешивающейся с ним жид костью с последующим измерением критической температуры взаимного растворения смеси, составленной пз влажного растворителя и несмешивающейся с ним жидкости, и по разности значений критических температур судят 1 о содержании воды в растворителе.В качестве несмешивающейся с полярным растворителем жидкости используют кремний, органические соединения, например октаметилциклотетрасплоксан. 2 Согласно описываемому испытуемого полярного раст пробирке длиной 15 слс п октаметилциклотетрасилокса пробирки нагревают при п тех пор, пока смесь не ста затем медленно охлаждают рывном перемешивапии. П к критической температуре в дают опалесценцию. При дальнейшем охлденни жидкость внезапно...

Кобальткарбонштфосфиттовьте комплексы, обрабатывают в нейтральной или щелочной среде при б 0120 С газом, содержащим кислород в 3-20-кратнов 1 избытке по отношению к количеству кобальта.Пример 1. На обработку берут раствор процесса гидрирования циклододекагриена в питалододецен, содержащий 60 вес. % циклоцодсиена, 38,5% толуола и 0,5% кобальткарбогтнцттрибутилфострттттового комплекса100 г раствора нагревают до 70 С и черезнего в течение часа пропускают 2,3 л возду(1 О-кратный избыток кислорода относи р ЭЗЛОИСЕНтельно требующегося по реакции). После этого отфильтровывают выделившийся осадок; содержание остаточного кобальта в растворе 0,0 О 07%.Пример 2. На обработку берут 50 г раствора кобальткарбонилгрифенилфосфинового...

Изобретение относится к способу очистки четыреххлористого углерода от примесей соединений, содержащих связи углерод-водород и/или двойные связи. Согласно способу раствор газообразного хлора в жидком четыреххлористом углероде подвергают воздействию ультрафиолетового облучения в реакторе, выполненном из прозрачного материала. Технический результат - очистка четыреххлористого углерода от соединений, содержащих двойные связи и связь углерод-водород. Способ обеспечивает получение четыреххлористого углерода, содержащего менее 10 мг/мл соединений со связью углерод-водород и двойными связями. 1 н. и 6 з.п. ф-лы, 1 табл.

Изобретение относится к способу очистки технического четыреххлористого углерода путем исчерпывающего фотохимического хлорирования примесей соединений с углеводородными и двойными связями хлором, растворенным в четыреххлористом углероде.

Очищенный четыреххлористый углерод может быть использован контрольно-аналитическими и метрологическими службами предприятий химической, нефтехимической и других отраслей промышленности, службами санитарно-экологического надзора, для синтеза органических соединений, а также для других целей.

Известен способ очистки четыреххлористого углерода от сероуглерода, отличающийся тем, что с целью упрощения технологии процесса исходный четыреххлористый углерод обрабатывают хлором при температуре 10-80°С в присутствии катализатора с удельной поверхностью 10-300 м 2 /г .

Способ позволяет добиться очистки четыреххлористого углерода только от сероуглерода.

Известен способ очистки хлорорганических продуктов, в частности метиленхлорида, хлороформа, четыреххлористого углерода и трихлорэтилена, от смолы и сажи. Способ очистки заключается в том, что в хлорорганические продукты перед испарением или ректификацией вводят топливо с пределами выкипания от 150 до 500°С .

Способ позволяет добиться очистки хлорорганических продуктов только от смолы и сажи.

Известен способ очистки технического четыреххлористого углерода от труднолетучих примесей, основанный на ректификационном разделении жидких смесей .

Недостатком способа является его недостаточная эффективность, так как получают четыреххлористый углерод реактивной квалификации только: "чистый", "чистый для анализа", "химически чистый", который содержит остаточное количество примесей соединений с углеводородными и двойными связями, что обусловлено их высокой летучестью, близостью температур кипения и образованием азеотропных смесей с основным компонентом. Получаемый таким способом четыреххлористый углерод не может быть использован при анализе содержания нефтепродуктов в воде и в качестве растворителя для проведения исследований методом протонно-магнитного резонанса.

Задачей изобретения является разработка недорогого и легко выполнимого способа очистки технического четыреххлористого углерода от примесей соединений с углеводородными и двойными связями, позволяющий получать четыреххлористый углерод для использования при анализе содержания нефтепродуктов в воде и в качестве растворителя для проведения исследований методом протонно-магнитного резонанса, а также для других целей.

Задача решена тем, что разработан легко осуществимый способ очистки технического четыреххлористого углерода от примесей, основанный на фотохимическом методе хлорирования соединений с углеводородными и двойными связями растворенным в четыреххлористом углероде хлором под воздействием ультрафиолетового облучения.

Метод основан на получении в растворе высокоактивных радикалов-атомов хлора, образующихся при поглощении ультрафиолетовых квантов света растворенными в четыреххлористом углероде молекулами хлора, которые эффективно разрушают углеводородные связи, приводя в результате цепной радикальной реакции к образованию полностью хлорированных продуктов. Одновременно происходят процессы полного хлорирования ненасыщенных соединений. Примеси, загрязняющие четыреххлористый углерод и не позволяющие его использовать при проведении многих исследований, например при определении содержания нефтепродуктов в воде, представлены насыщенными и ненасыщенными хлорпроизводными низших углеводородов. Это соединения с углеводородными и двойными связями, в основном, производные метана, преимущественно хлороформ, а также производные этана, такие как дихлорэтан, трихлорэтан, трихлорэтилен, тетрахлорэтилен.

Способ очистки технического четыреххлористого углерода от примесей соединений с углеводородными и двойными связями осуществляют следующим образом.

В четыреххлористом углероде растворяют газообразный хлор до концентрации его в растворе примерно 0,2-2%. Полученный раствор облучают ртутно-кварцевыми лампами низкого давления. При облучении в диапазоне УФ-излучения 250-400 нм в течение 1-20 мин примеси хлорпроизводных метана превращаются в четыреххлористый углерод, а хлорпроизводных этана - в гексахлорэтан. Для удаления избытка хлора и образующихся кислот четыреххлористый углерод после фотолиза обрабатывается восстанавливающим раскислителем, например кальцинированной содой (Na 2 CO 3). Фотохимическое хлорирование осуществляют в реакторе, выполненном из прозрачного материала, в основном из кварцевого стекла или стекла марки «Пирекс», хорошо пропускающего УФ-излучение в диапазоне 250-400 нм. Получают четыреххлористый углеводород, содержащий примесей соединений с углеводородными и двойными связями не более 10 мг/л, определенных методом ИКН, применяемым для измерения массовой концентрации нефтепродуктов в четыреххлористом углеводороде . Очищенный таким образом четыреххлористый углеводород содержит пентахлорэтан и гексахлорэтан, при этом содержание их зависит от содержания в исходном техническом четыреххлористом углероде хлорпроизводных этана с углеводородными и двойными связями. Такой очищенный четыреххлористый углерод может быть использован при определении содержания нефтепродуктов в воде, так как присутствующие пентахлорэтан и гексахлорэтан не влияют на результаты анализа. Для получения четыреххлористого углерода особой чистоты дополнительно осуществляют стадию отделения четыреххлористого углерода от пентахлорэтана и гексахлорэтана методом обычной перегонки, которые остаются в кубовом остатке. Процесс фотохимического хлорирования может быть осуществлен в периодическом или проточно-циркуляционном режиме.

Пример 1. В 32 г технического четыреххлористого углерода растворяют 0,1 г хлора. Полученный раствор в кювете из кварцевого стекла облучают светом ртутной лампы ДРТ-250 в течение 15 мин. После облучения УФ-светом полученный продукт обрабатывался безводным углекислым натрием (примерно 2 г) для удаления избытка хлора, образующихся кислот и воды. На основании хроматографического анализа образца четыреххлористого углерода до и после очистки установлено, что количество примесей, определенных по методу ИКН, сократилось с 217 до 10,2. Массовая доля пентахлорэтана и гексахлорэтана составила соответственно 0,153% и 1,340%.

Пример 2. В 32 г технического четыреххлористого углерода растворяют 0,1 г хлора. Полученный раствор в кювете из стекла марки «Пирекс» облучают светом ртутной лампы ДРТ-1000 в течение 5 мин. После облучения УФ-светом полученный продукт обрабатывался безводным углекислым натрием (примерно 2 г) для удаления избытка хлора, образующихся кислот и воды. На основании хроматографического анализа образца четыреххлористого углерода до и после очистки установлено, что количество примесей, определенных по методу ИКН, сократилось с 217 до 5,7. Массовая доля пентахлорэтана и гексахлорэтана составила соответственно 0,011% и 1,628%.

Пример 3. Очищенный четыреххлористый углерод, полученный как в примере 2, дополнительно подвергают перегонке при температуре кипения четыреххлористого углерода и получают в дистилляте четыреххлористый углерод с содержанием основного компонента 99,987%, количество примесей, определенных по методу ИКН, сократилось с 5,7 до 2,3. В кубовом остатке остается смесь пентахлорэтана и гексахлорэтана.

Пример 4. Четыреххлористый углерод насыщается газообразным хлором до концентрации 0,6% в смесителе. Затем, со скоростью 0,5 л/мин, поступает в охлаждаемый проточной водой цилиндрический фотореактор из стекла марки «Пирекс», освещаемый ртутной лампой ДРТ-1000, расположенной вдоль его оси. Из фотореактора четыреххлористый углерод поступает на фильтрующую колонку, где проходит через безводный углекислый натрий для удаления избытка хлора, а также образующихся кислот и воды. На основании хроматографического анализа образца четыреххлористого углерода до и после очистки установлено, что количество примесей, определенных по методу ИКН, сократилось с 217 до 12,3. Массовая доля пентахлорэтана и гексахлорэтана составила соответственно 0,322% и 1,311%.

Следовательно, при очистке четыреххлористого углеводорода таким способом получают четыреххлористый углерод, содержащий примесей соединений с углеводородными и двойными связями, определенных методом ИКН, не более 10 мг/л. Присутствующая в очищенном четыреххлористом углероде примесь пентахлорэтана и гексахлорэтана позволяет использовать его при определении содержания нефтепродуктов в воде. Дополнительной перегонкой получают четыреххлористый углерод "особой чистоты".

Результаты очистки четыреххлористого углерода представлены в таблице.

Таблица

Содержание примесей в четыреххлористом углероде

Наименование примеси, массовая доля (%)* Содержание примеси в четыреххлористом углероде
В исходном В очищенном
№ примера
1 2 3 4
Хлороформ 0,240 0,001 0,001 0,001 0,002
Дихлорэтан 0,461 0,000 0,000 0,000 0,000
Четыреххлористый углерод 96,937 97,138 97,170 99,987 97,125
Трихлорэтилен 0,477 0,000 0,000 0,000 0,004
Трихлорэтан 0,075 0,000 0,000 0,000 0,000
Тетрахлорэтан 0,005 0,000 0,000 0,068
Тетрахлорэтилен 0,015 0,000 0,000 0,000 0,010
Пентахлорэтан 0,000 0,153 0,011 0,005 0,332
Гексахлорэтан 0,005 1,340 1,628 0,002 1,311
ИКН" (мг/л) 217,4 10,2 5,7 2,3 12,3
* Массовая доля компонента определена методом газовой хроматографии

** ИКН - суммарное содержание эквивалентного количества углеводородов определено методом ИК-спектроскопии на концентратомере ИКН-025

ИСТОЧНИКИ ИНФОРМАЦИИ

1. SU №686274.

2. RU №2051887.

3. RU №2241513.

4. ГОСТ Р51797-2001.

1. Способ очистки четыреххлористого углерода, отличающийся тем, что осуществляют очистку от примесей соединений с углеводородными и двойными связями методом исчерпывающего фотохимического хлорирования растворенным в четыреххлористом углероде хлором в реакторе, выполненном из прозрачного материала, под воздействием ультрафиолетового облучения, при этом получают четыреххлористый углерод для анализа определения содержания нефтепродуктов в воде, содержащий не более 10 мг/л соединений с углеводородными и двойными связями.

2. Способ по п.1, отличающийся тем, что получают четыреххлористый углерод для проведения исследований методом протонно-магнитного резонанса.