Мы уже говорили, что в свое время были сделаны попытки определить абсолютную скорость движения Земли сквозь воображаемый «эфир», который, как думали тогда, пропитывает собой все пространство. Самый известный из таких опытов проделали в 1887 г. Майкельсон и Морли. Но только через 18 лет отрицательные результаты их опыта объяснил Эйнштейн.

Для опыта Майкельсона — Морли использовался прибор, схема которого показана на фиг. 15.2. Главные части прибора: источник света А, посеребренная полупрозрачная стеклянная пластинка В, два зеркала С и Е. Все это жестко укрепляется на тяжелой плите. Зеркала С и Е размещены были на одинаковом расстоянии L от пластинки В. Пластинка В расщепляет падающий пучок света на два, перпендикулярных один к другому; они направляются на зеркала и отражаются обратно на пластинку В. Пройдя снова сквозь пластинку В, оба пучка накладываются друг на друга (D и F). Если время прохождения света от В до Е и обратно равно времени прохождения от В до С и обратно, то возникающие пучки D и F окажутся в фазе и усилятся взаимно; если же эти времена хоть немного отличаются, то в пучках возникает сдвиг по фазе и, как следствие,— интерференция. Если прибор в эфире «покоится», то времена в точности равны, а если он движется направо со скоростью и, то появится разница во времени. Давайте посмотрим, почему.

Сначала подсчитаем время прохождения света от В к Е и обратно. Пусть время «туда» равно t 1 , а время «обратно» равно t 2 . Но пока свет движется от В до зеркала, сам прибор уйдет на расстояние ut 1 , так что свету придется пройти путь L + ut 1 со скоростью с. Этот путь можно поэтому обозначить и как ct 1 , следовательно,
ct 1 = L + ut 1 , или t 1 = l/(c - u)
(этот результат становится очевидным, если учесть, что скорость света по отношению к прибору есть с — u; тогда как раз время равно длине L, деленной на с — u). Точно так же можно рассчитать и t2. За это время пластинка В приблизится на расстояние ut 2 , так что свету на обратном пути придется пройти только L — ut 2 . Тогда
ct 2 = L -ut 2 , или t 2 = l/(c +u)
Общее же время равно
t 1 + t 2 = 2Lc/(c 2 - u 2);
удобнее это записать в виде

А теперь подсчитаем, сколько времени t 3 свет будет идти от пластинки В до зеркала С. Как и прежде, за время t 3 зеркало С сдвинется направо на расстояние ut 3 (до положения С), а свет пройдет по гипотенузе ВС расстояние ct 3 . Из прямоугольного треугольника следует
(ct 3) 2 = L 2 + (ut 3) 2 ,
или
L 2 = c 2 t 2 3 - u 2 t 2 3 = (c 2 - u 2)t 2 3 ,
откуда
t 3 = l/√(c 2 - u 2)

При обратной прогулке от точки С` свету приходится пройти то же расстояние; это видно из симметрии рисунка. Значит, и время возвращения то же (t 3), а общее время равно 2t 3 . Мы запишем его в виде

Теперь мы можем сравнить оба времени. Числители в (15.4) и (15.5) одинаковы — это время распространения света в покоящемся приборе. В знаменателях член u 2 /с 2 мал, если только и много меньше с. Знаменатели эти показывают, насколько изменяется время из-за движения прибора. Заметьте, что эти изменения неодинаковы — время прохождения света до С и обратно чуть меньше времени прохождения до Е и обратно. Они не совпадают, даже если расстояния от зеркал до В одинаковы. Остается только точно измерить эту разницу.

Здесь возникает одна техническая тонкость: а что если длины L не точно равны между собой? Ведь точного равенства все равно никогда не добьешься. В этом случае надо просто повернуть прибор на 90°, расположив ВС по движению, a BE — поперек. Различие в длинах тогда перестает играть роль, и остается только наблюдать за сдвигом интерференционных полос при повороте прибора.

Во время опыта Майкельсон и Морли расположили прибор так, что отрезок BE оказался параллельным движению Земли но орбите (в определенный час дня и ночи). Орбитальная скорость равна примерно 30 км/сек, и «снос эфира» в определенные часы дня или ночи и в определенное время года должен достигать этой величины. Прибор был достаточно чувствителен, чтобы заметить такое явление. Но никакого различия во временах обнаружено не было — скорость движения Земли сквозь эфир оказалось невозможно обнаружить. Результат опыта был нулевой.

Это было загадочно. Это настораживало. Первую плодотворную идею, как выйти из тупика, выдвинул Лоренц. Он допустил, что все материальные тела при движении сжимаются, но только в направлении движения. Таким образом, если длина покоящегося тела есть Lo, то длина тела, движущегося со скоростью u (назовем ее L || , где значок || показывает, что движение происходит вдоль длины тела), дается формулой

Если эту формулу применить к интерферометру Манкель-сона — Морли, то расстояние от В до С останется прежним, а расстояние от В до Е укоротится до L√(1 - u 2 /c 2). Таким образом, уравнение (15.5) не изменится, но L в уравнении (15.4) изменится в соответствии с (15.6). В результате мы получим

Сравнивая это с (15.5), мы видим, что теперь t 1 + t 2 = 2t 3 . Стало быть, если прибор действительно сокращается так, как мы предположили, то становится понятным, почему опыт Май-кельсона — Морли никакого эффекта не дал.

Хотя гипотеза сокращения успешно объясняла отрицательный итог опыта, она сама оказалась беззащитной перед обвинением, что ее единственная цель — избавиться от трудностей в объяснении опыта. Она была чересчур искусственной. Однако сходные трудности возникали и в других опытах по обнаружению эфирного ветра. В конце концов стало казаться, что природа вступила в «заговор» против человека, что она прибегла к конспирации и то и дело вводит какие-то новые явления, чтобы свести к нулю каждое явление, с помощью которого человек пытается измерить u.

И наконец, было признано (на это указал Пуанкаре), что полная конспирация — это и есть закон природы! Пуанкаре предположил, что в природе есть закон, заключающийся в том, что нельзя обнаружить эфирный ветер никаким способом, т. е. абсолютную скорость обнаружить невозможно.

– важен для развития теории относительности опыт, в котором не было обнаружено движения Земли относительно эфира. Эксперимент провели в 1887 Альберт Майкельсон и Эдвард Морли. Альберт Майкельсон был награжден Нобелевской премией по физике за 1907 с формулировкой: «за создание прецизионных инструментов и выполненные с их помощью спектроскопические и метрологические исследования», в котором прямо не упоминается этот эксперимент, но упоминается изобретено для него оборудования.
Схематическое изображение движения Земли в гипотетическом потоке эфира. Со становлением электродинамики в конце XIX века считалось, что электромагнитные волны, а, следовательно, и свет, распространяются в особом невесомом упругой среде, которое называли эфиром. Поскольку Земля движется вокруг Солнца со скоростью свыше 30 км / с, то возникали две возможности: либо она движется относительно эфира, или же она захватывает эфир частично, увлекая за собой. Изначально эксперимент ставил себе задачу проверки этих гипотез.
http://сайт/uploads/posts/2011-02/1297963534_2%28en%29.svg.png Схема движения лучей в интерферометре Майкельсона Современная интерференционная картина в аналогичном эксперименте с использованием красного лазера. Перед исследователями стояла задача изобрести инструмент, который бы был достаточно чувствительным к движению эфира относительно Земли. Этот инструмент теперь называется интерферометром Майкельсона. В интерферометре начальный луч света разделяется на два с помощью полупрозрачного зеркала, а затем эти два луча, преодолев разный путь, сводятся вместе и интерферируют. Изучая интерференционную картину, можно сделать вывод о разнице оптических путей между двумя лучами.
Если Земля движется относительно эфира, то луч, перпендикулярный к движению Земли и луч, параллельный к движению Земли должны были бы по разному вичуваты движение эфира, а, следовательно, проходить различное оптический путь. Таким образом, при вращении интерферометра интерференционная картина должна была бы меняться.
В 1881 Майкельсон в Германии провел такой эксперимент и получил меньшую, чем ожидалось, изменение интерференционной картины, но тогда его прибор имел еще слишком большую погрешность, чтобы можно было что-то утверждать.
Точный интерферометр Майкельсон сконструировал в США, в университете Вестерн-Резерв вместе с Морли. Длина плеча интерферометра составляла 11 м. Устройство поместили в закрытое помещение в подвале каменного здания, в землю уменьшая возможный температурное воздействие и вибрации. Для того, чтобы уменьшить вибрации еще больше, интерферометр смонтировали на огромном блоке мрамора, который поместили в бассейн, заполненный ртутью. По расчетам они должны были бы увидеть эффект движения Земли относительно эфира.
При полном вращении мраморной глыбы с интерферометром интерференционная картина должна была изменяться периодически с двумя пиками и двумя провалами на один скотный двор. Кроме того, поскольку Земля вращается вокруг своей оси фаза этих периодических изменений должна была меняться в зависимости от дня или ночи.
Есперимент не обнаружил ожидаемого изменения интерференционной картины. Смещения, которое ожидалось при предположении, что эфир совсем не увлекается Землей должно быть по расчетам 0,4. Эксперимен показал, что оно не превышает 0,01. Поскольку это смещение пропорционально квадрату скорости, то Майкельсон и Морли в своей статье в American Journal of Science сделали вывод, что скорость Земли относительно эфира может составлять 1 / 6, и безусловно меньше 1 / 4 скорости Земли видноcно Солнца. Поскольку измеренное значеня смещение картины лежало в пределах экспериментальной погрешности, может быть, что скорость Земли относительно эфира вообще нулевая.
Такой вывод согласовывался с гипотезой Стокса, что эфир увлекается Землей. Однако, Хендрик Лоренц показал в 1886, что гипотеза Стокса противоречивых. Таким образом, результат эксперимента не нашел удовлетворительного объяснения. Решение проблемы пришло только после создания Альбертом Эйнштейном теории относительности.

Описывая опыты по определению скорости света, мы как бы забыли о том, что все эти опыты производятся на Земле, несущейся в мировом пространстве с огромной скоростью, превышающей в десятки раз скорость артиллерийского снаряда. Правда, в этих опытах наблюдатель и источник света неподвижны относительно друг друга, но если считать, что Земля движется по отношению к неподвижному эфиру, в котором распространяются световые волны, то следует ожидать влияния этого движения на результаты наблюдений.

Разберем описанные выше методы определения скорости света, считая мировой эфир неподвижным, а Землю движущейся. В обоих методах - и Физо и Фуко - определялось время, необходимое световому лучу для того, чтобы пройти от какой-то точки А до точки В и вернуться обратно в точку А. Мы считали, что это время равно просто где а - длина отрезка с - скорость света.

Теперь мы должны уточнить наше рассуждение. Прежде всего мы определим с как скорость света по отношению к неподвижному эфиру. Затем надо учесть, что в результате движения Земли, согласно законам механики Ньютона, скорость света по отношению к Земле уже не будет равна с. Если направление распространения светового луча совпадает с направлением движения Земли, то эта скорость должна быть равна если свет и Земля движутся в противоположных направлениях, то где скорость Земли по отношению к эфиру. В первом случае свет должен «догонять» Землю, во втором, наоборот, свет и Земля движутся навстречу друг другу.

Рис. 6 изображает случай, когда отрезок параллелен направлению движения Земли; тогда от А к В луч идет с относительной скоростью а в обратном - со скоростью

Значит, от до В он дойдет за время а от В до А - за время полное же время определится следующим образом:

или с точностью до величин четвертого порядка (относительно

Рис. 6. Распространение света в движущейся системе.

Мы видим, что учет движения Земли привел к некоторой поправке, правда небольшой по величине: следовательно,

Рассмотрим теперь другой случай расположения отрезка А В (рис. 6, справа). Пусть отрезок перпендикулярен к направлению движения Земли и в В помещено плоское зеркало. Скорость света по отношению к Земле в этом случае будет равна и в прямом (от А к В) и в обратном направлениях (от В к А).

В этом случае косое направление скорости с по отношению к определяется тем, что за время прохождения светового сигнала из сама точка В смещается вправо (аналогично будет при обратном пути от В к А).

Полное время распространения света определится как

Извлекая приближенно корень квадратный, получаем;

откуда с точностью до величин четвертого порядка

Сопоставляя и мы видим, что

Таким образом, следует ожидать, что измерение разности времен при двух взаимно-перпендикулярных расположениях А В позволит определить скорость движения Земли по отношению к эфиру.

Неприятным в формуле (10) является то, что в нее входит квадрат отношения искомой скорости к скорости света. Тем самым речь идет об установлении «эффектов второго порядка малости».

Делалось много попыток обнаружить эффекты первого порядка, однако все они были неудачны. Часть из них, основанная на исследовании явлений преломления, интерференции, дифракции и др., покоилась на неверных принципиальных основаниях. Лоренц показал, что во всех этих случаях отсутствие эффектов первого порядка вытекает из теории неподвижного эфира с таким же успехом, как и из теории полностью увлекаемого эфира.

Другие попытки, носившие, правда, характер неосуществленных проектов, были основаны на схемах с часами, расположенными на расстоянии друг от друга. В таких схемах определяется время прохождения светом пути от одних часов до других. Зная расстояние между часами, мы можем вычислить скорость света. Так как в этом случае путь светового луча по отношению к Земле не замкнут (луч идет от к В, но не возвращается опять в Л), можно было надеяться на обнаружение эффектов первого порядка, связанных с движением Земли.

Однако очевидно, что для таких опытов нужно иметь совершенно одинаково (синхронно) идущие часы в точках Майкельсон показал, что самые точные методы синхронизации часов, находящихся в разных точках, практически сводятся к посылке электромагнитных сигналов из одной точки в другую, т. е. ко всем теперь хорошо известной «поверке времени» по радио.

Но эти сигналы распространяются опять-таки со скоростью света. Таким образом, путь световой (электромагнитной) волны оказывается замкнутым, и мы опять приходим к эффектам второго порядка, соответствующим формулам (7), (9) и (10). Поэтому Майкельсон взялся за осуществление опыта, позволяющего непосредственно обнаружить эффекты второго порядка. Здесь сразу возникает законный вопрос: нельзя ли было воспользоваться для этих целей схемами опытов по определению скорости света, уже описанными выше? Ведь мы как раз показали, что во всех этих опытах должны были наблюдаться эффекты второго порядка. В принципе действительно это так: если бы Майкельсон при определении скорости света по методу Физо - Фуко проделал измерения для двух положений трубы (в которой распространялся свет), соответствующих рис. 6, он должен

был бы получить разность времен запаздывания, определяемую формулой (10).

Однако обнаружить существование этой разности он практически не смог бы, несмотря на использование больших расстояний. Ведь мы указывали, что Майкельсон определил скорость света с точностью до т. е. примерное точностью до 0,000003 измеряемой величины. Как ни велика эта точность, она недостаточна для обнаружения эффектов второго порядка, соответствующих одной стомиллионной доле измеряемой величины (см. выше).

Майкельсон блестяще обошел это затруднение, использовав волновые свойства света. На рис. 7 изображена схема знаменитого опыта Майкельсона.

Луч света, выходящий из падает на полупрозрачную пластинку расположенную под углом половина света отражается по направлению к , половина проходит сквозь пластинку к помещены зеркала, отражающие световые лучи обратно; лучи, идущие обратно, опять попадают на пластинку причем половина света, отраженного от пройдет сквозь пластинку и попадет в трубу точно так же половина света, отраженного от отразится от пластинки и попадет в трубу (для наглядности мы несколько сместили на рисунке прямые и обратные лучи).

Рис. 7. Схема опыта Майкельсона.

В результате в трубе сойдутся два световых луча, которые от до шли в равных условиях, а затем один из них прошел путь а другой путь от до опять будет общим.

должно было быть примерно равным сек. Чтобы обнаружить такую ничтожную величину, Майкельсону пришлось восполь зоваться волновыми свойствами света. Так как период светового колебания равен для видимых лучей то указанное выше изменение запаздывания соответствует 0,4 периода, т. е. составляет заметную долю периода. Майкельсон, наблюдая интерференцию колебаний первого и второго лучей, мог определить разность фаз этих колебаний с точностью до 0,01 периода (§ 20).

Таким образом, наблюдения интерференции позволяли ему определять долю искомого эффекта, несмотря на сравнительно малое расстояние вместо Однако результат опыта оказался отрицательным. Никакого изменения запаздывания одного луча по отношению к другому при вращении прибора не было обнаружено. Так как ожидаемые эффекты пропорциональны квадрату скорости Земли, отсюда следовало, что скорость Земли по отношению к эфиру во всяком случае меньше т. е. от орбитальной скорости Земли.

Последующие опыты только уточнили этот результат, понизив верхний предел для скорости Земли по отношению к эфиру или, что то же, скорости «эфирного ветра» по отношению к Земле до величины, меньшей орбитальной скорости Земли (Иллингворт, 1927).

Опыт Майкельсона

Схема опыта Майкельсона-Гэля

О́пыты Ма́йкельсона - класс физических экспериментов, исследующих зависимость скорости распространения света от направления. В настоящее время (2011 год) точность опытов позволяет найти относительные отклонения изотропности скорости света в единицы 10 −16 , однако на этом уровне отклонения не найдены. Опыты Майкельсона являются эмпирической основой принципа инвариантности скорости света , входящего в общую теорию относительности (ОТО) и специальную теорию относительности (СТО) .

История

Предыстория

Теория распространения света, включающая в себя эфир, появилась в XVII веке. В 1727 году английский астроном Джеймсом Брэдли объяснил через неё аберрацию света . Эдуард Кеттелер и Т. Юнг несколько развили теорию эфира. В 1868 году Хук поставил опыт по проверке теории эфира на эффекте аберрации света от земного источника света. В 1871-1872 годах Эйри провёл серию точных опытов с астрономическим источником света, сделав из них вывод о том, что орбитальное движение Земли полностью увлекает эфир.

Эпоха Майкельсона

Впервые подобный опыт был поставлен Альбертом Майкельсоном на своём интерферометре в 1881 году , с целью измерения зависимости скорости света от движения Земли относительно эфира . Под эфиром тогда понималась среда, аналогичная объёмнораспределённой материи, в которой свет распространяется подобно звуковым колебаниям. Результат эксперимента по мнению Майкельсона был отрицательным - смещения полос не совпадают по фазе с теоретическими, а колебания этих смещений только немного меньше теоретических.

Опыты Миллера

По мнению профессора Дэйтона К. Миллера (Кейсовская школа прикладных наук): - «Можно полагать, что эксперимент лишь показал, что эфир в конкретной подвальной комнате увлекается в продольном направлении вместе с ней. Мы собираемся поэтому переместить аппарат на холм, чтобы посмотреть, не обнаружится ли там эффект» .

В марте 1921 г. методика и аппарат были несколько изменены и получен результат в 10 км/с «эфирного ветра». Результаты были тщательно проверены на предмет возможного устранения погрешностей, связанных с магнитострикцией и тепловым излучением. Направление вращение аппарата не оказывало влияния на результат эксперимента .

Более поздние исследования результатов, полученных Д. Миллером, показали, что флюктуации, наблюдавшиеся им и интерпретированные как наличие «эфирного ветра» являются следствием статистических ошибок и неучёта температурных эффектов .

Опыты Кеннеди

Доктор Рой Кеннеди (Калифорнийский технологический институт) после публикаций результатов опыта Морли-Миллера видоизменяет опыт с целью проверки. Интерферометр помещается в металлический герметичный корпус, заполненный гелием под давлением 1 атм. Используя приспособление, способное различить очень малые смещения интерференционной картины, стало возможным сократить размер плеч до 4 м. Использовался поляризованный свет с целью исключить насколько возможно рассеяние света на зеркалах. Точность опыта соответствовала смещению полос на 2·10 −3 их ширины. На этом аппарате скорость 10 км/с, полученная Миллером, давала бы сдвиг, соответствующий 8·10 −3 длины волны зелёного цвета, что в четыре раза больше наименьшего определяемого значения. Эксперимент проводился в лаборатории Норман Бридж, в помещении с постоянной температурой, в различное время дня. Для проверки зависимости скорости эфирного ветра от высоты местности опыты проводились также на Маунт Вилсон в здании обсерватории. Эффект оказался не превышающим 1 км/с для эфирного ветра .

Теперь я хотел бы сделать несколько замечаний по поводу эксперимента Миллера. Я считаю, что существует серьёзная проблема, связанная с эффектом, периодическим для полного оборота аппарата, и сброшенная со счетов Миллером, подчеркивающим значение эффекта полупериода, т. е. повторяющегося при полуобороте аппарата, и касающаяся вопроса об эфирном ветре. Во многих случаях эффект полного периода значительно больше эффекта полупериода. По Миллеру эффект полного периода зависит от ширины полос и будет нулевым для неопределенно широких полос.

Хотя Миллер утверждает, что он смог исключить этот эффект в значительной степени в своих замерах в Кливленде, и это можно легко объяснить в эксперименте, я хотел бы более четко понять причины этого. Говоря в данный момент как приверженец теории относительности, я должен утверждать, что такого эффекта вовсе не существует. Действительно, поворот аппарата в целом, включая источник света, не дает какого-либо сдвига с точки зрения теории относительности. Никакого эффекта не должно быть, когда Земля и аппарат находятся в покое. По Эйнштейну такое же отсутствие эффекта должно наблюдаться для движущейся Земли. Эффект полного периода, таким образом, находится в противоречии с теорией относительности и имеет большое значение. Если затем Миллер обнаружил систематические эффекты, существование которых нельзя отрицать, важно также узнать причину эффекта полного периода - Проф. Лоренц

Опыты Майкельсона и Гэля

В 1925 г. Майкельсоном и Гэлем у Клиринга в Иллинойсе на земле были уложены водопроводные трубы в виде прямоугольника. Диаметр труб 30 см. Трубы AF и DE направлены точно с запада на восток, EF, DA и CB - с севера на юг. DE=AF=613 м. EF=DA=CB=339.5 м. Одним общим насосом работающим в течение трех часов можно откачать воздух до давления 1 см ртутного столба. Чтобы обнаружить смещение Майкельсон сравнивает в поле зрительной трубы интерференционные полосы, получаемые при обегании большого и малого контура. Один пучок света шёл по часовой стрелке, другой против. Смещение полос, вызываемое вращением Земли, регистрировали в различные дни при полной перестановке зеркал и различными людьми. Всего было сделано 269 измерений. Теоретически предполагая эфир неподвижным, следует ожидать смещения полосы на 0,236±0,002. Обработка данных наблюдений дала смещение 0,230±0,005, таким образом подтвердив существование и величину эффекта Саньяка .

Таким образом, перед нами снова положительный эффект, сам по себе с поразительной точностью подтверждающий предположение о неувлекаемом эфире, отстающим при суточном вращении Земли. - С.И. Вавилов т. IV

Современные варианты


Wikimedia Foundation . 2010 .

Смотреть что такое "Опыт Майкельсона" в других словарях:

    Общий вид интерферометра в перспективе. Изображение из доклада А.Майкельсона по результатам его экспериментов, выполненных в 1881 г. Движение Земли вокруг Солнца и через эфир … Википедия

    опыт Майкельсона-Морлея - Maikelsono ir Morlio eksperimentas statusas T sritis fizika atitikmenys: angl. Michelson Morley experiment vok. Michelson Morley Versuch, m rus. опыт Майкельсона Морлея, m pranc. expérience de Michelson et Morley, f; expérience de Michelson… … Fizikos terminų žodynas

    Доказал независимость скорости света от движения Земли (А. А. Майкельсон 1881). В классической физике опыт Майкельсона не нашел объяснения; в относительности теории постоянство скорости света во всех инерциальных системах отсчета принимается как… … Большой Энциклопедический словарь

    Доказал независимость скорости света от движения Земли (А. А. Майкельсон, 1881). В классической физике Майкельсона опыт не нашёл объяснения; в относительности теории постоянство скорости света во всех инерциальных системах отсчёта принимается как … Энциклопедический словарь

    Поставлен амер. физиком А. А. Майкельсоном (A. A. Michelson) в 1881 с целью измерения влияния движения Земли на скорость света. В физике кон. 19 в. предполагалось, что свет распространяется в нек рой универсальной мировой среде эфире. При этом… … Физическая энциклопедия

    Опыт, поставленный впервые А. Майкельсоном в 1881 с целью измерения влияния движения Земли на скорость света. Отрицательный результат М. о. был одним из основных экспериментальных фактов, легших в основу относительности теории (См.… … Большая советская энциклопедия

    Майкельсона-Морли опыт - опыт, поставленный впервые в 1881 году американскими физиками Майкельсоном и Морли с целью обнаружения влияния орбитального движения Земли на скорость света, но не выявивший этого влияния (известен в науке как «отрицательный результат» опыта).… … Начала современного естествознания

Идея опыта состоит в сравнении прохождения светом двух путей, из которых один совпадает с направлением движения тела в эфире, а другой ему перпендикулярен.

Пластинка B полупрозрачна. На ней луч разделяется на два когерентных перпендикулярных луча, идущих к зеркалам D и C. В интерферометре встречаются два когерентных луча, прошедших от места разделения различные пути.

Если эти пути пройдены ими за одинаковое время, то в точку встречи они придут в одной фазе и усилят друг друга. Если за разное время, то в точке встречи разность фаз и колебаний изменится. Наблюдая интерференцию, можно сделать вывод о разности фаз пришедших в интерферометр когерентных волн, а отсюда вычислить время запаздывания одной волны относительно другой. Это и было сделано Майкельсоном и Морли. Это был один из самых замечательных экспериментов 19 столетия. Простой по существу, этот опыт привел к революции в науке.

Пусть прибор движется в направлении плеча BC со скоростью v относительно эфира. Скорость света относительно эфира c . Полное время, в течение которого будет пройден путь до зеркала C и обратно, будет равно:

До зеркала D путь BDB /

Здесь v – скорость движения Земли по орбите вокруг Солнца (~30 км/c). Следовательно, если прибор стоит на Земле, то . Учитывая малость этого члена, выражения можно разложить в ряды:

Получаем:

Разность хода лучей равна:

Теперь повернем прибор на 90° так, чтобы с направлением движения совпало плечо BD, а плечо BC было направлено перпендикулярно. Для разности хода получим:

Полное изменение разности хода лучей во времени при повороте прибора равно:

В опыте прибор медленно вращался, так как истинное движение прибора относительно эфира было неизвестно. Таким образом, при повороте прибора на 360° каждое из плеч два раза совпадает с направлением движения и два раза становится перпендикулярным направлению движения. Если при повороте прибора разность хода лучей меняется, то положение полос интерференции в поле зрения также должно изменяться. Оценим величину смещения.

Относительно смещение полос интерференции равно:

расстояния между полосами, а это можно без труда наблюдать и измерить.

Но на опыте никакого эффекта не было обнаружено. Абсолютную скорость Земли оказалось невозможно обнаружить.

Получалось, что скорость света по всем направлениям одна и та же и никакого эфирного ветра нет. Продольная и поперечная составляющие скорости всегда равны друг другу. С появлением лазеров точность опытов удалось значительно повысить.

Опыты показали, что скорость света не складывается ни со скоростью источника, ни со скоростью приемника.


Постоянство скорости света находится в глубоком противоречии с привычными представлениями опытов и с формулами сложения скоростей на основе преобразований Галилея. При скоростях много меньших скорости света отклонения не наблюдаются, так как они очень малы. Неправильность формулы сложения скоростей проявляется, когда скорости достаточно велики. Впервые отклонения были обнаружены в 1860 году в опытах Физо.