Нейтронной бомбы впервые была разработана в 60-х годах прошлого века в США. Сейчас эти технологии доступны России, Франции и Китаю. Это относительно небольшие заряды и считаются ядерным малой и сверхмалой силы. Однако у бомбы увеличена искусственно мощь нейтронного излучения, поражающего и уничтожающего белковые тела. Нейтронное излучение прекрасно проникает через броню и может уничтожать живую силу даже в специализированных бункерах.

Пик создания нейтронных бомб пришелся в США на 80-е годы. Большое количество протестов и появление новых видов брони заставили американских военных прекратить их выпуск. Последняя штатовская бомба была демонтирована в 1993 году.
При этом взрыв не несет каких-либо серьезных разрушений - воронка от него небольшая и ударная волна незначительна. Радиационный фон после взрыва нормализуется за относительно короткое время, через два-три года счетчик Гейгера не регистрирует никакой аномалии. Естественно, что нейтронные бомбы были в арсенале ведущих мировых , но не было зафиксировано ни одного случая их боевого применения. Считается, что нейтронная бомба снижает так называемый порог ядерной войны, что резко увеличивает шансы ее использования при крупных военных конфликтах.

Как действует нейтронная бомба и способы защиты

В состав бомбы входит обычный плутониевый заряд и немного термоядерной дейтеро-тритиевой смеси. При подрыве плутониевого заряда слитие ядер дейтерия и трития, из-за чего происходит концентрированное нейтронное излучение. Современные военные ученые могут делать бомбу с направленным зарядом излучения вплоть до полосы в несколько сот метров. Естественно это страшное оружие, от которого нет спасения. Областью ее применения военные стратеги считают поля и дороги, по которым движется бронетехника.
Неизвестно, есть ли нейтронная бомба сейчас на вооружении России и Китая. Польза от ее применения на поле боя достаточно условна, но оружие весьма эффективно в отношении уничтожения гражданского населения.
Поражающее действие нейтронного излучения выводит из строя боевой состав, находящийся внутри бронетехники, при этом сама техника не страдает и может быть захвачена как трофей. Специально для защиты от нейтронного оружия была разработана специальная броня, в которую входят листы с высоким содержанием бора, поглощающего излучение. Также стараются применять такие сплавы, которые бы не содержали элементов, дающих сильную радиоактивную направленность. Об увенчавшихся успехом испытаниях нового типа оружия - нейтронной бомбы, СССР объявил в ноябре 1978 года. Хотя с тех пор прошло уже почти 40 лет все еще существует множество заблуждений, связанных с действиями этого типа ядерных бомб. Вот несколько самых часто встречающихся...

Взрыв нейтронной бомбы не уничтожает технику и здания

Распространено ошибочное мнение, что при взрыве нейтронной бомбы дома и техника остаются целыми. В действительности, при взрыве такой бомбы тоже возникает ударная волна, но она гораздо слабее по сравнению с ударной волной, возникающей при атомном взрыве. До 20% энергии выделившейся в момент взрыва нейтронного заряда приходится на ударную волну, в то время как во время атомного взрыва около 50%.

Чем больше мощность заряда нейтронной бомбы, тем она эффективнее

Из-за того, что нейтронное излучение быстро поглощается атмосферой, использование нейтронных бомб с большой мощностью неэффективно. По этой причине мощность таких зарядов менее 10 килотонн и они классифицируются как тактическое ядерное оружие. Реальный эффективный радиус поражения потоком нейтронов при взрыве такой бомбы около 2000 м.

Нейтронные бомбы способны поражать только объекты расположенные на земле
В связи с тем, что основной поражающий эффект обычного ядерного оружия - это ударная волна, то это оружие становится неэффективным для высоко летящих целей. Из-за сильной разреженности атмосферы ударная волна практически не образуется, а световым излучением уничтожить боеголовки возможно только в случае если они находятся вблизи от взрыва, гамма-излучение практически полностью поглощается оболочками и не причиняет боеголовкам существенного вреда. В связи с этим распространено заблуждение, что использование нейтронной бомбы в космосе и на больших высотах практически бесполезно. Это не верно. Исследования и разработки в области применения нейтронных бомб изначально были направлены на применение их в системах ПВО. В связи с тем, что большая часть энергии при взрыве выделяется в виде нейтронного излучения, нейтронные заряды могут уничтожать спутники и боеголовки противника, в случае если у них отсутствует специальная защита.

Никакая броня не защити вас от потока нейтронов

Да, обыкновенная стальная броня не спасает от излучения, возникающего при взрыве нейтронной бомбы, кроме того из-за потока нейтронов возможно броня может стать сильно радиоактивной, и в результате еще долгое время поражать людей. Но уже разработаны такие виды брони, которые могут эффективно защитить людей от нейтронного излучения. Для этого при бронировании дополнительно используются листы, содержащие большое количество бора, так как он может хорошо поглощать нейтроны, также состав брони подбирается таким образом, чтобы в ней не было веществ, которые при воздействии облучения не давали бы наведённую радиоактивность. Одну из лучших защит от нейтронного облучения дают материалы, содержащие водород (полипропилен, парафин, вода и т.д.)

Продолжительность радиоактивного излучения после взрыва нейтронной бомбы и атомной бомбы одинаковая

Хотя нейтронная бомба очень опасна, при взрыве она не создает долгосрочное заражение местности. По словам ученых, уже через сутки можно находиться в эпицентре взрыва в относительной безопасности. А вот водородная бомба после взрыва вызывает заражение территории в радиусе нескольких километров на много лет.

Какие эффекты оказывает взрыв нейтронной бомбы на разных расстояниях (для увеличения изображения кликните по картинке)

За 50 лет, начиная с открытия ядерного деления в начале 20 века до 1957 года прогремели десятки атомных взрывов. Благодаря им ученые получили особо ценные знания о физических принципах и модели деления атомов. Стало ясно, что наращивать бесконечно мощность атомного заряда нельзя из-за физических и гидродинамических ограничений к урановой сфере внутри боезаряда.

Поэтому был разработан другой тип ядерного оружия – нейтронная бомба. Главным поражающим фактором при ее взрыве является не взрывная волна и радиация, а нейтронное излучение, которое с легкостью поражает живую силу противника, оставляя в сохранности технику, строения и вообще всю инфраструктуру.

История создания

Впервые о создании нового оружия задумались в Германии в 1938 году, после того, как два физика Ган и Штрассман произвели расщепление атома урана искусственным путем.Годом позже началось строительство первого реактора в окрестностях Берлина, для которого было закуплено несколько тонн урановой руды.С 1939 года в связи с началом войны все работы по атомному оружию засекречиваются. Программа получает название «Урановый проект».

“Толстяк”

В 1944 году группа Гейзенберга изготовила урановые плиты для реактора. Планировалось, что эксперименты по созданию искусственной цепной реакции начнутся в начале 1945. Но из-за переноса реактора из Берлина в Хайгерлох график опытов сместился на март. Согласно проведенному эксперименту, реакция деления в установке не началась, т.к. массы урана и тяжелой воды была ниже необходимого значения (1,5т урана при потребности в 2,5т).

В апреле 1945 года Хайгерлох заняли американцы. Реактор был разобран и с оставшимся сырьем вывезен в США.В Америке атомная программа получила название «Манхэттенский проект». Его руководителем стал физик Оппенгеймер совместно с генералом Гровсом. В их группу входили также немецкие ученые Бор, Фриш, Фукс, Теллер, Блох, уехавшие или эвакуированные из Германии.

Итогом их труда стала разработка двух бомб с использованием урана и плутония.

Плутониевый боезаряд, выполненный в виде авиабомбы («Толстяк») был сброшен на Нагасаки 9 августа 1945 года. Урановая бомба пушечного типа («Малыш») испытаний на полигоне в Нью-Мехико не проходила и была сброшена на Хиросиму 6 августа 1945 года.


“Малыш”

Работы над созданием своего атомного оружия в СССР начали проводиться с 1943 года. Советская разведка доложила Сталину о разработках в нацисткой Германии сверхмощного оружия, способного изменить ход войны. Также в докладе содержались сведения, что кроме Германии работы над атомной бомбой проводились и в странах союзниках.

Для ускорения работ по созданию атомного оружияразведчиками был завербован физик Фукс, участвовавший в то время в «Манхэттенском проекте». Также в Союз были вывезены ведущие немецкие физики Арденне, Штейнбек,Риль связанные с «урановым проектом» в Германии. В 1949 году на полигоне в Семипалатинской области Казахстана произошло успешное испытание советской бомбы РДС-1.

Пределом мощности атомной бомбы считается 100 кт.

Наращивание количества урана в заряде приводит к его срабатыванию лишь только достигается критическая масса. Ученые пробовали решить данную проблему путем создания различных компоновок, разделяя уран на множество частей (в виде раскрытого апельсина) которые соединялись воедино при взрыве. Но это не позволило существенно увеличить мощность.В отличие от атомной бомбы топливо для термоядерного синтеза не имеет критической массы.

Первой предложенной конструкцией водородной бомбы стал «классический супер», разработанный Теллером в 1945 году. По сути это была та же атомная бомба, внутри которой поместили цилиндрический контейнер с дейтериевой смесью.

Ученым из СССР Сахаровым осенью 1948 года создана принципиально новая схема водородной бомбы – «слойка». В ней в качестве взрывателя использовался уран-238 вместо урана-235 (изотоп U-238 является отходом при производстве изотопа U-235), источником трития и дейтерия одновременно стал дейтрид лития.

Бомба состояла из множества слоев урана и дейтрида.Первую термоядерную бомбу РДС-37 мощностью 1,7 Мт взорвали на Семипалатинском полигоне в ноябре 1955 года. Впоследствии ее конструкция с небольшими изменениями стала классической.

Нейтронная бомба

В 50-х годах 20 столетия военная доктрина НАТО в ведении войны опиралась на использование тактического ядерного оружия низкой мощности для сдерживания танковых войск государств Варшавского договора. Однако в условиях высокой плотности населения в районе западной Европы применение этого типа оружия могло привести к таким людским и территориальным потерям (радиоактивное загрязнение), что преимущества, полученные от его использования, становились ничтожными.

Тогда учеными США была предложена идея о ядерной бомбе со сниженными побочными эффектами. В качестве поражающего фактора в новом поколении оружия решили использовать нейтронное излучение, проникающая способность которого превосходила гамма-излучение в несколько раз.

В 1957 году Теллер возглавил группу исследователей, выполняющих разработку нейтронной бомбы нового поколения.

Первый взрыв нейтронного оружия под индексом W-63 произошел в 1963 году в одной из шахт на полигоне в Неваде. Но мощность излучения была гораздо ниже запланированной, и проект отправили на доработку.

В 1976 году на том же самом полигоне были выполнены испытания обновленного нейтронного заряда. Результаты испытаний настолько превзошли все ожидания военных, что решение о серийном производстве данного боеприпаса приняли за пару дней на самом высоком уровне.


Начиная с середины 1981 года, в США разворачивается полномасштабный выпуск нейтронных зарядов. За короткий промежуток времени было собрано 2000 снарядов для гаубиц и более 800 ракет «Ланс».

Конструкция и принцип действия нейтронной бомбы

Нейтронная бомба – это вид тактического ядерного оружия мощностью от 1 до 10 кт, где поражающим фактором является поток нейтронного излучения. При ее взрыве 25% энергии выделяется в виде быстрых нейтронов (1-14 МэВ), остальная часть расходуется на образование ударной волны и светового излучения.

По своей конструкции нейтронную бомбу можно условно разделить на несколько типов.

К первому типу относятся маломощные (до 1 кт) заряды весом до 50 кг, которые используются в качестве боеприпасов к безоткатному или артиллерийскому орудию («Дэви Крокет»). В центральной части бомбы располагается полый шар из делящегося вещества. Внутри его полости находится «бустинг», состоящий из дейтерий-тритиевой смеси, усиливающий деление. Снаружи шар экранирован бериллиевым отражателем нейтронов.

Реакция термоядерного синтеза в таком снаряде запускается разогревом действующего вещества до миллиона градусов путем подрыва атомной взрывчатки, внутри которой помещен шар. При этом испускаются быстрые нейтроны с энергией 1-2 МэВ и гамма-кванты.

Второй тип нейтронного заряда используется в основном в крылатых ракетах или авиабомбах. По своей конструкции он не сильно отличается от «Дэви Крокета». Шар с «бустингом» вместо бериллиевого отражателя окружен небольшим слоем из дейтерий-тритиевой смеси.

Также существует и другой тип конструкции, когда дейтерий-тритиевая смесь выведена наружу атомной взрывчатки. При взрыве заряда запускается термоядерная реакция с выделением нейтронов высокой энергии 14 МэВ, проникающая способность которых выше, чем у нейтронов, образующихся при ядерном делении.

Ионизирующая способность нейтронов с энергией 14МэВ в семь раз выше, чем у гамма-излучения.

Т.е. поглощенный живыми тканями нейтронный поток в 10 рад соответствует полученной дозе гамма-излучения в 70 рад. Объяснить это можно тем, что при попадании в клетку нейтрон выбивает ядра атомов и запускает процесс разрушения молекулярных связей с образованием свободных радикалов (ионизация). Почти сразу радикалы начинают хаотично вступать в химические реакции, нарушая работу биологических систем организма.

Еще одним поражающим фактором при взрыве нейтронной бомбы является наведенная радиоактивность. Возникает при воздействии нейтронного излучения на почву, строения, военную технику, различные объекты в зоне взрыва. При захвате нейтронов веществом (особенно металлами) происходит частичное преобразование стабильных ядер в радиоактивные изотопы (активация). Они в течении некоторого времени испускают собственное ядерное излучение, которое также становится опасным для живой силы противника.

Из-за этого боевая техника, орудия, танки, подвергшиеся излучению, не могут быть использованы по назначению от пары дней до нескольких лет. Вот почему остро встала проблема по созданию защиты экипажа техники от нейтронного потока.

Увеличение толщины брони военной техники почти не влияет на проникающую способность нейтронов. Улучшение защиты экипажа удалось достичь путем использования в конструкции брони многослойных поглощающих покрытий на основе соединений бора, установкой алюминиевого подбоя с водородосодержащим слоем пенополиуретана, а также изготовлением брони из хорошо очищенных металлов или металлов, которые при облучении не создают наведенную радиоактивность (марганец, молибден, цирконий, свинец, обедненный уран).

Нейтронная бомба имеет один серьезный недостаток – малый радиус поражения, из-за рассеивания нейтронов атомами газов земной атмосферы.

Но нейтронные заряды полезны в ближнем космосе. В связи с отсутствием там воздуха нейтронный поток распространяется на большие расстояния. Т.е. данный тип оружия является эффективным средством ПРО.

Так, при взаимодействии нейтронов с материалом корпуса ракеты создается наведенная радиация, которая приводит к повреждению электронной начинки ракеты, а также к частичной детонации атомного запала с началом реакции деления. Выделяющееся радиоактивное излучение позволяет демаскировать боеголовку, отсеяв ложные цели.


Закатом нейтронного оружия стал 1992 год. В СССР, а затем и России был разработан гениальный по своей простоте и эффективности способ защиты ракет – в состав материала корпуса ввели бор и обедненный уран. Поражающий фактор нейтронного излучения оказался бесполезен для вывода из строя ракетного вооружения.

Политические и исторические последствия

Работы по созданию нейтронного оружия начались в 60-ых годах 20 века в США. Через 15 лет технологию производства доработали и создали первый в мире нейтронный заряд, что привело к своеобразной гонке вооружений. На данный момент такой технологией обладают Россия и Франция.

Главной опасностью этого типа оружия при его применении стала не возможность массового уничтожение мирного населения страны противника, а размытие грани между ядерной войной и обычным локальным конфликтом. Поэтому Генеральной Ассамблеей ООН было принято несколько резолюций с призывом к полному запрету нейтронного оружия.

СССР в 1978 году первым предложил США договориться об использовании нейтронных зарядов и разработал проект об их запрещении.

К сожалению, проект остался только на бумаге, т.к. ни одна страна запада и США не приняли его.

Позже, в 1991 году президентами России и США были подписаны обязательства, по которым тактические ракеты и артиллерийские снаряды с нейтронной боеголовкой должны быть полностью уничтожены. Что несомненно не помешает наладить их массовый выпуск за короткое время при изменении военно-политической ситуации в мире.

Видео

Целью создания нейтронного оружия в 60-х-70-х годах являлось получение тактической боеголовки, главным поражающим фактором в котором являлся бы поток быстрых нейтронов, излучаемых из области взрыва.

Создание такого оружия обусловила низкая эффективность обычных тактических ядерных зарядов против бронированных целей, таких как танки, бронемашины и т. п. Благодаря наличию бронированного корпуса и системы фильтрации воздуха бронетехника способна противостоять всем поражающим факторам ядерного взрыва. Поток нейтронов же с легкостью проходит даже через толстую стальную броню. При мощности в 1 кт смертельная доза облучения в 8000 рад, которая ведет к немедленной и быстрой смерти (минуты), будет получена экипажем танка на расстоянии в 700 м. Опасный для жизни уровень достигается на дистанции 1100. также дополнительно, нейтроны создают в конструкционных материалах (например, броне танка) наведенную радиоактивность.

Из-за очень сильного поглощения и рассеивания нейтронного излучения в атмосфере делать мощные заряды с увеличенным выходом излучения нецелесообразно. Максимальная мощность боеголовок составляет ~1Кт. Хотя о нейтронных бомбах и говорят, что они оставляют материальные ценности неразрушенными, это не совсем так. В пределах радиуса нейтронного поражения (около 1 километра) ударная волна может уничтожить или сильно повредить большинство зданий.

Из особенностей конструкции стоит отметить отсутствие плутониевого запального стержня. Из-за малого количества термоядерного топлива и низкой температуры начала реакции необходимость в нем отсутствует. Весьма вероятно, что зажигание реакции происходит в центре капсулы, где в результате схождения ударной волны развивается высокое давление и температура.

Нейтронный заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь дейтерия и трития с большим содержанием последнего, как источника быстрых нейтронов). При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции. При этом нейтроны не должны поглощаться материалами бомбы и, что особо важно, необходимо предотвратить их захват атомами делящегося материала.

Большая часть энергии взрыва при применении нейтронного оружия выделяется в результате запущенной реакции синтеза. Конструкция заряда такова, что до 80 % энергии взрыва составляет энергия потока быстрых нейтронов, и только 20 % приходится на остальные поражающие факторы (ударную волну, электромагнитный импульс, световое излучение).

Общее количество делящихся материалов для 1-кт нейтронной бомбы где-то 10 кг. 750-тонный энергетический выход синтеза означает наличие 10 граммов дейтерий-тритиевой смеси.

При взрыве нейтронной бомбы основным поражающим фактором является поток нейтронов. Он проходит сквозь большинство предметов, но причиняет вред живым организмам на уровне атомов и частиц. Радиация воздействует, прежде всего, на ткани головного мозга, вызывая шок, конвульсии, паралич и кому. Кроме того, нейтроны преобразуют атомы внутри человеческого тела, создавая радиоактивные изотопы, облучающие организм изнутри. Смерть при этом наступает не мгновенно, а в течение 2 суток.

Если сбросить нейтронный заряд на город, основная часть построек в радиусе 2 километров от эпицентра взрыва сохранится, в то время, как люди и животные погибнут. Например, для уничтожения всего населения Парижа, как было подсчитано, достаточно 10-12 бомб. Те жители, которым удастся выжить, годами будут страдать от лучевой болезни.

«Зловещим прообразом такого оружия была атомная бомба, сброшенная американским лётчиком 6 августа 1945 года на Хиросиму. Теперь установлено, что эта бомба (урановая) при взрыве дала в 4-5 раз больше нейтронов, чем бомба, взорванная в Нагасаки (плутониевая). И как результат – в Хиросиме погибло почти в 3 раза больше людей, чем в Нагасаки, хотя мощность бомбы, сброшенной на Хиросиму, была в два раза меньше», - писал в 1986 году автор книги «За пределами законности», Иван Арцибасов.

Использовать бомбу с источником быстрых нейтронов (изотопом беррилия) в 1958 году предложил американский физик Сэмюэль Коэн. Впервые подобный заряд военные США испытали через 5 лет на подземном полигоне в штате Невада.

Как только общественность узнала о новом виде оружия, мнения по поводу допустимости его применения разделились. Одни приветствовали «рациональный» способ ведения войны, позволяющий избежать лишних разрушений и экономических потерь. Подобным образом рассуждал и сам Коэн, который был свидетелем уничтожения Сеула во время Корейской войны. Критики нейтронного оружия, напротив, утверждали, что с его появлением человечество дошло до «полного изуверства». В 1970-80-х годах при поддержке Москвы левая интеллигенция развернула движение против нейтронных бомб, производство которых запустила в 1981 год администрация Рональда Рейгана. Страх перед «нейтронной смертью» настолько укоренился, что военные пропагандисты США даже прибегали к эвфемизмам, называя нейтронную бомбу «устройством повышенной радиации» (enhanced radiation device).